Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,7 +14,6 @@ from typing import List, Dict, Any, Optional
|
|
| 14 |
from ultralytics import YOLO
|
| 15 |
import piexif
|
| 16 |
import zipfile
|
| 17 |
-
import subprocess
|
| 18 |
|
| 19 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
| 20 |
logging.basicConfig(filename="app.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
@@ -47,57 +46,168 @@ def zip_all_outputs(report_path: str, video_path: str, chart_path: str, map_path
|
|
| 47 |
zip_path = os.path.join(OUTPUT_DIR, f"drone_analysis_outputs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip")
|
| 48 |
try:
|
| 49 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 50 |
-
|
| 51 |
-
if report_path and os.path.exists(report_path):
|
| 52 |
zipf.write(report_path, os.path.basename(report_path))
|
| 53 |
-
|
| 54 |
-
else:
|
| 55 |
-
log_entries.append(f"Warning: Report file not found for ZIP: {report_path}")
|
| 56 |
-
|
| 57 |
-
# Add video file
|
| 58 |
-
if video_path and os.path.exists(video_path):
|
| 59 |
zipf.write(video_path, os.path.join("outputs", os.path.basename(video_path)))
|
| 60 |
-
|
| 61 |
-
else:
|
| 62 |
-
log_entries.append(f"Warning: Video file not found for ZIP: {video_path}")
|
| 63 |
-
|
| 64 |
-
# Add chart file
|
| 65 |
-
if chart_path and os.path.exists(chart_path):
|
| 66 |
zipf.write(chart_path, os.path.join("outputs", os.path.basename(chart_path)))
|
| 67 |
-
|
| 68 |
-
else:
|
| 69 |
-
log_entries.append(f"Warning: Chart file not found for ZIP: {chart_path}")
|
| 70 |
-
|
| 71 |
-
# Add map file
|
| 72 |
-
if map_path and os.path.exists(map_path):
|
| 73 |
zipf.write(map_path, os.path.join("outputs", os.path.basename(map_path)))
|
| 74 |
-
log_entries.append(f"Added map to ZIP: {map_path}")
|
| 75 |
-
else:
|
| 76 |
-
log_entries.append(f"Warning: Map file not found for ZIP: {map_path}")
|
| 77 |
-
|
| 78 |
-
# Add detected issue images
|
| 79 |
for file in detected_issues:
|
| 80 |
if os.path.exists(file):
|
| 81 |
zipf.write(file, os.path.join("captured_frames", os.path.basename(file)))
|
| 82 |
-
log_entries.append(f"Added image to ZIP: {file}")
|
| 83 |
-
else:
|
| 84 |
-
log_entries.append(f"Warning: Image file not found for ZIP: {file}")
|
| 85 |
-
|
| 86 |
-
# Add flight logs
|
| 87 |
for root, _, files in os.walk(FLIGHT_LOG_DIR):
|
| 88 |
for file in files:
|
| 89 |
file_path = os.path.join(root, file)
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
log_entries.append(f"Created ZIP: {zip_path}")
|
| 97 |
-
if os.path.exists(zip_path):
|
| 98 |
-
log_entries.append(f"Confirmed ZIP file exists: {zip_path}")
|
| 99 |
-
else:
|
| 100 |
-
log_entries.append(f"Error: ZIP file not created: {zip_path}")
|
| 101 |
return zip_path
|
| 102 |
except Exception as e:
|
| 103 |
log_entries.append(f"Error: Failed to create ZIP: {str(e)}")
|
|
@@ -198,206 +308,10 @@ def generate_report(
|
|
| 198 |
inference_times: List[float],
|
| 199 |
io_times: List[float]
|
| 200 |
) -> str:
|
| 201 |
-
# Generating LaTeX-based PDF report
|
| 202 |
log_entries.append("Generating report...")
|
|
|
|
| 203 |
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 204 |
-
report_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{timestamp}.pdf")
|
| 205 |
-
tex_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{timestamp}.tex")
|
| 206 |
-
md_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{timestamp}.md") # Fallback Markdown path
|
| 207 |
-
|
| 208 |
-
# LaTeX document content
|
| 209 |
report_content = [
|
| 210 |
-
r"\documentclass[a4paper,12pt]{article}",
|
| 211 |
-
r"\usepackage[utf8]{inputenc}",
|
| 212 |
-
r"\usepackage[T1]{fontenc}",
|
| 213 |
-
r"\usepackage{geometry}",
|
| 214 |
-
r"\geometry{margin=1in}",
|
| 215 |
-
r"\usepackage{graphicx}",
|
| 216 |
-
r"\graphicspath{{./}}",
|
| 217 |
-
r"\usepackage{booktabs}",
|
| 218 |
-
r"\usepackage{longtable}",
|
| 219 |
-
r"\usepackage{enumitem}",
|
| 220 |
-
r"\usepackage{hyperref}",
|
| 221 |
-
r"\hypersetup{colorlinks=true,linkcolor=blue,filecolor=blue,urlcolor=blue}",
|
| 222 |
-
r"\usepackage{amsmath}",
|
| 223 |
-
r"\usepackage{caption}",
|
| 224 |
-
r"\usepackage{pdfpages}",
|
| 225 |
-
r"\usepackage{times}",
|
| 226 |
-
r"\begin{document}",
|
| 227 |
-
r"\title{NHAI Drone Survey Analysis Report}",
|
| 228 |
-
r"\author{Nagasurendra, Data Analyst}",
|
| 229 |
-
r"\date{\today}",
|
| 230 |
-
r"\maketitle",
|
| 231 |
-
r"\tableofcontents",
|
| 232 |
-
r"\newpage",
|
| 233 |
-
r"\section{Project Details}",
|
| 234 |
-
r"\begin{itemize}",
|
| 235 |
-
r"\item \textbf{Project Name}: NH-44 Delhi-Hyderabad Section (Package XYZ)",
|
| 236 |
-
r"\item \textbf{Highway Section}: Km 100 to Km 150",
|
| 237 |
-
r"\item \textbf{State}: Telangana",
|
| 238 |
-
r"\item \textbf{Region}: South",
|
| 239 |
-
rf"\item \textbf{{Survey Date}}: {datetime.now().strftime('%Y-%m-%d')}",
|
| 240 |
-
r"\item \textbf{Drone Service Provider}: ABC Drone Services Pvt. Ltd.",
|
| 241 |
-
r"\item \textbf{Technology Service Provider}: XYZ AI Analytics Ltd.",
|
| 242 |
-
rf"\item \textbf{{Work Order Reference}}: Data Lake WO-{datetime.now().strftime('%Y-%m-%d')}-XYZ",
|
| 243 |
-
r"\item \textbf{Report Prepared By}: Nagasurendra, Data Analyst",
|
| 244 |
-
rf"\item \textbf{{Report Date}}: {datetime.now().strftime('%Y-%m-%d')}",
|
| 245 |
-
r"\end{itemize}",
|
| 246 |
-
r"\section{Introduction}",
|
| 247 |
-
r"This report consolidates drone survey results for NH-44 (Km 100--150) under Operations \& Maintenance, per NHAI Policy Circular No. 18.98/2024, detecting potholes and cracks using YOLOv8 for Monthly Progress Report integration.",
|
| 248 |
-
r"\section{Drone Survey Metadata}",
|
| 249 |
-
r"\begin{itemize}",
|
| 250 |
-
r"\item \textbf{Drone Speed}: 5 m/s",
|
| 251 |
-
r"\item \textbf{Drone Height}: 60 m",
|
| 252 |
-
r"\item \textbf{Camera Sensor}: RGB, 12 MP",
|
| 253 |
-
r"\item \textbf{Recording Type}: JPEG, 90$^\circ$ nadir",
|
| 254 |
-
r"\item \textbf{Image Overlap}: 85\%",
|
| 255 |
-
r"\item \textbf{Flight Pattern}: Single lap, ROW centered",
|
| 256 |
-
r"\item \textbf{Geotagging}: Enabled",
|
| 257 |
-
r"\item \textbf{Satellite Lock}: 12 satellites",
|
| 258 |
-
r"\item \textbf terrain Follow Mode}: Enabled",
|
| 259 |
-
r"\end{itemize}",
|
| 260 |
-
r"\section{Quality Check Results}",
|
| 261 |
-
r"\begin{itemize}",
|
| 262 |
-
r"\item \textbf{Resolution}: 4000x3000 (12 MP)",
|
| 263 |
-
r"\item \textbf{Overlap}: 85\%",
|
| 264 |
-
r"\item \textbf{Camera Angle}: 90$^\circ$ nadir",
|
| 265 |
-
r"\item \textbf{Drone Speed}: $\leq$ 5 m/s",
|
| 266 |
-
r"\item \textbf{Geotagging}: 100\% compliant",
|
| 267 |
-
r"\item \textbf{QC Status}: Passed",
|
| 268 |
-
r"\end{itemize}",
|
| 269 |
-
r"\section{AI/ML Analytics}",
|
| 270 |
-
rf"Total Frames Processed: {frame_count}\par",
|
| 271 |
-
rf"Detection Frames: {detection_frame_count} ({detection_frame_count/frame_count*100:.2f}\%)\par",
|
| 272 |
-
rf"Total Detections: {metrics['total_detections']}\par",
|
| 273 |
-
r"\textbf{Breakdown:}",
|
| 274 |
-
r"\begin{itemize}"
|
| 275 |
-
]
|
| 276 |
-
|
| 277 |
-
for item in metrics.get("items", []):
|
| 278 |
-
percentage = (item["count"] / metrics["total_detections"] * 100) if metrics["total_detections"] > 0 else 0
|
| 279 |
-
report_content.append(rf"\item {item['type']}: {item['count']} ({percentage:.2f}\%)")
|
| 280 |
-
report_content.extend([
|
| 281 |
-
r"\end{itemize}",
|
| 282 |
-
rf"Processing Time: {total_time:.2f} seconds\par",
|
| 283 |
-
rf"Average Frame Time: {sum(frame_times)/len(frame_times):.2f} ms" if frame_times else r"Average Frame Time: N/A\par",
|
| 284 |
-
rf"Average Resize Time: {sum(resize_times)/len(resize_times):.2f} ms" if resize_times else r"Average Resize Time: N/A\par",
|
| 285 |
-
rf"Average Inference Time: {sum(inference_times)/len(inference_times):.2f} ms" if inference_times else r"Average Inference Time: N/A\par",
|
| 286 |
-
rf"Average I/O Time: {sum(io_times)/len(io_times):.2f} ms" if io_times else r"Average I/O Time: N/A\par",
|
| 287 |
-
rf"Timestamp: {metrics.get('timestamp', 'N/A')}\par",
|
| 288 |
-
r"Summary: Potholes and cracks detected in high-traffic segments.\par",
|
| 289 |
-
r"\section{Output File Structure}",
|
| 290 |
-
r"\begin{itemize}",
|
| 291 |
-
rf"\item \texttt{{drone\_analysis\_report\_<{timestamp}>.pdf}}: This report",
|
| 292 |
-
r"\item \texttt{outputs/processed\_output.mp4}: Processed video with annotations",
|
| 293 |
-
rf"\item \texttt{{outputs/chart\_<{timestamp}>.png}}: Detection trend chart",
|
| 294 |
-
rf"\item \texttt{{outputs/map\_<{timestamp}>.png}}: Issue locations map",
|
| 295 |
-
r"\item \texttt{captured\_frames/detected\_<frame>.jpg}: Geotagged images for detected issues",
|
| 296 |
-
r"\item \texttt{flight\_logs/flight\_log\_<frame>.csv}: Flight logs matching image frames",
|
| 297 |
-
r"\end{itemize}",
|
| 298 |
-
r"\textbf{Note}: Images and logs share frame numbers (e.g., \texttt{detected\_000001.jpg} corresponds to \texttt{flight\_log\_000001.csv}).",
|
| 299 |
-
r"\section{Geotagged Images}",
|
| 300 |
-
rf"Total Images: {len(detected_issues)}\par",
|
| 301 |
-
rf"Storage: Data Lake \texttt{{/project\_xyz/images/{datetime.now().strftime('%Y-%m-%d')}}}\par",
|
| 302 |
-
r"\begin{longtable}{|c|l|l|l|l|l|}",
|
| 303 |
-
r"\hline",
|
| 304 |
-
r"\textbf{Frame} & \textbf{Issue Type} & \textbf{GPS (Lat, Lon)} & \textbf{Timestamp} & \textbf{Confidence} & \textbf{Image Path} \\ \hline",
|
| 305 |
-
r"\endhead"
|
| 306 |
-
])
|
| 307 |
-
|
| 308 |
-
for detection in all_detections[:100]:
|
| 309 |
-
report_content.append(
|
| 310 |
-
rf"{detection['frame']:06d} & {detection['label']} & ({detection['gps'][0]:.6f}, {detection['gps'][1]:.6f}) & {detection['timestamp']} & {detection['conf']:.2f} & \texttt{{{os.path.basename(detection['path'])}}} \\ \hline"
|
| 311 |
-
)
|
| 312 |
-
report_content.append(r"\end{longtable}")
|
| 313 |
-
|
| 314 |
-
# Embedding geotagged images
|
| 315 |
-
report_content.append(r"\subsection{Geotagged Images Display}")
|
| 316 |
-
for detection in all_detections[:100]:
|
| 317 |
-
image_path = detection['path']
|
| 318 |
-
if os.path.exists(image_path):
|
| 319 |
-
report_content.append(rf"\begin{{figure}}[h]")
|
| 320 |
-
report_content.append(rf"\centering")
|
| 321 |
-
report_content.append(rf"\includegraphics[width=0.8\textwidth]{{{image_path}}}")
|
| 322 |
-
report_content.append(rf"\caption{{Frame {detection['frame']:06d}: {detection['label']} at ({detection['gps'][0]:.6f}, {detection['gps'][1]:.6f}), Confidence: {detection['conf']:.2f}}}")
|
| 323 |
-
report_content.append(rf"\end{{figure}}")
|
| 324 |
-
|
| 325 |
-
report_content.extend([
|
| 326 |
-
r"\section{Flight Logs}",
|
| 327 |
-
rf"Total Logs: {len(detected_issues)}\par",
|
| 328 |
-
rf"Storage: Data Lake \texttt{{/project\_xyz/flight\_logs/{datetime.now().strftime('%Y-%m-%d')}}}\par",
|
| 329 |
-
r"\begin{longtable}{|c|l|l|l|l|l|l|l|}",
|
| 330 |
-
r"\hline",
|
| 331 |
-
r"\textbf{Frame} & \textbf{Timestamp} & \textbf{Latitude} & \textbf{Longitude} & \textbf{Speed (m/s)} & \textbf{Satellites} & \textbf{Altitude (m)} & \textbf{Log Path} \\ \hline",
|
| 332 |
-
r"\endhead"
|
| 333 |
-
])
|
| 334 |
-
|
| 335 |
-
for detection in all_detections[:100]:
|
| 336 |
-
log_path = f"flight_logs/flight_log_{detection['frame']:06d}.csv"
|
| 337 |
-
report_content.append(
|
| 338 |
-
rf"{detection['frame']:06d} & {detection['timestamp']} & {detection['gps'][0]:.6f} & {detection['gps'][1]:.6f} & 5.0 & 12 & 60 & \texttt{{{os.path.basename(log_path)}}} \\ \hline"
|
| 339 |
-
)
|
| 340 |
-
report_content.extend([
|
| 341 |
-
r"\end{longtable}",
|
| 342 |
-
r"\section{Processed Video}",
|
| 343 |
-
rf"Path: \texttt{{outputs/processed\_output.mp4}}\par",
|
| 344 |
-
rf"Frames: {output_frames}\par",
|
| 345 |
-
rf"FPS: {output_fps:.2f}\par",
|
| 346 |
-
rf"Duration: {output_duration:.2f} seconds\par",
|
| 347 |
-
r"\section{Visualizations}",
|
| 348 |
-
rf"Detection Trend Chart: \texttt{{outputs/chart\_<{timestamp}>.png}}\par",
|
| 349 |
-
rf"Issue Locations Map: \texttt{{outputs/map\_<{timestamp}>.png}}\par"
|
| 350 |
-
])
|
| 351 |
-
|
| 352 |
-
if chart_path and os.path.exists(chart_path):
|
| 353 |
-
report_content.extend([
|
| 354 |
-
r"\begin{figure}[h]",
|
| 355 |
-
r"\centering",
|
| 356 |
-
rf"\includegraphics[width=0.8\textwidth]{{{chart_path}}}",
|
| 357 |
-
r"\caption{Detection Trend Chart}",
|
| 358 |
-
r"\end{figure}"
|
| 359 |
-
])
|
| 360 |
-
if map_path and os.path.exists(map_path):
|
| 361 |
-
report_content.extend([
|
| 362 |
-
r"\begin{figure}[h]",
|
| 363 |
-
r"\centering",
|
| 364 |
-
rf"\includegraphics[width=0.8\textwidth]{{{map_path}}}",
|
| 365 |
-
r"\caption{Issue Locations Map}",
|
| 366 |
-
r"\end{figure}"
|
| 367 |
-
])
|
| 368 |
-
|
| 369 |
-
report_content.extend([
|
| 370 |
-
r"\section{Processing Timestamps}",
|
| 371 |
-
rf"Total Processing Time: {total_time:.2f} seconds\par",
|
| 372 |
-
r"\textbf{Log Entries (Last 10):}",
|
| 373 |
-
r"\begin{itemize}"
|
| 374 |
-
])
|
| 375 |
-
|
| 376 |
-
for entry in log_entries[-10:]:
|
| 377 |
-
report_content.append(rf"\item {entry}")
|
| 378 |
-
report_content.extend([
|
| 379 |
-
r"\end{itemize}",
|
| 380 |
-
r"\section{Stakeholder Validation}",
|
| 381 |
-
r"\begin{itemize}",
|
| 382 |
-
r"\item \textbf{AE/IE Comments}: Pending",
|
| 383 |
-
r"\item \textbf{PD/RO Comments}: Pending",
|
| 384 |
-
r"\end{itemize}",
|
| 385 |
-
r"\section{Recommendations}",
|
| 386 |
-
r"\begin{itemize}",
|
| 387 |
-
r"\item Repair potholes in high-traffic segments.",
|
| 388 |
-
r"\item Seal cracks to prevent degradation.",
|
| 389 |
-
r"\item Schedule follow-up survey.",
|
| 390 |
-
r"\end{itemize}",
|
| 391 |
-
r"\section{Data Lake References}",
|
| 392 |
-
rf"Images: \texttt{{/project\_xyz/images/{datetime.now().strftime('%Y-%m-%d')}}}\par",
|
| 393 |
-
rf"Flight Logs: \texttt{{/project\_xyz/flight\_logs/{datetime.now().strftime('%Y-%m-%d')}}}\par",
|
| 394 |
-
rf"Video: \texttt{{/project\_xyz/videos/processed\_output_{datetime.now().strftime('%Y%m%d')}.mp4}}\par",
|
| 395 |
-
rf"DAMS Dashboard: \texttt{{/project\_xyz/dams/{datetime.now().strftime('%Y-%m-%d')}}}\par",
|
| 396 |
-
r"\end{document}"
|
| 397 |
-
])
|
| 398 |
-
|
| 399 |
-
# Fallback Markdown report content
|
| 400 |
-
md_report_content = [
|
| 401 |
"# NHAI Drone Survey Analysis Report",
|
| 402 |
"",
|
| 403 |
"## Project Details",
|
|
@@ -443,8 +357,8 @@ def generate_report(
|
|
| 443 |
|
| 444 |
for item in metrics.get("items", []):
|
| 445 |
percentage = (item["count"] / metrics["total_detections"] * 100) if metrics["total_detections"] > 0 else 0
|
| 446 |
-
|
| 447 |
-
|
| 448 |
f"- Processing Time: {total_time:.2f} seconds",
|
| 449 |
f"- Average Frame Time: {sum(frame_times)/len(frame_times):.2f} ms" if frame_times else "- Average Frame Time: N/A",
|
| 450 |
f"- Average Resize Time: {sum(resize_times)/len(resize_times):.2f} ms" if resize_times else "- Average Resize Time: N/A",
|
|
@@ -455,10 +369,10 @@ def generate_report(
|
|
| 455 |
"",
|
| 456 |
"## 5. Output File Structure",
|
| 457 |
"- ZIP file contains:",
|
| 458 |
-
|
| 459 |
" - `outputs/processed_output.mp4`: Processed video with annotations",
|
| 460 |
-
|
| 461 |
-
|
| 462 |
" - `captured_frames/detected_<frame>.jpg`: Geotagged images for detected issues",
|
| 463 |
" - `flight_logs/flight_log_<frame>.csv`: Flight logs matching image frames",
|
| 464 |
"- Note: Images and logs share frame numbers (e.g., `detected_000001.jpg` corresponds to `flight_log_000001.csv`).",
|
|
@@ -472,11 +386,11 @@ def generate_report(
|
|
| 472 |
])
|
| 473 |
|
| 474 |
for detection in all_detections[:100]:
|
| 475 |
-
|
| 476 |
f"| {detection['frame']:06d} | {detection['label']} | ({detection['gps'][0]:.6f}, {detection['gps'][1]:.6f}) | {detection['timestamp']} | {detection['conf']:.2f} | captured_frames/{os.path.basename(detection['path'])} |"
|
| 477 |
)
|
| 478 |
|
| 479 |
-
|
| 480 |
"",
|
| 481 |
"## 7. Flight Logs",
|
| 482 |
f"- Total Logs: {len(detected_issues)}",
|
|
@@ -488,11 +402,11 @@ def generate_report(
|
|
| 488 |
|
| 489 |
for detection in all_detections[:100]:
|
| 490 |
log_path = f"flight_logs/flight_log_{detection['frame']:06d}.csv"
|
| 491 |
-
|
| 492 |
f"| {detection['frame']:06d} | {detection['timestamp']} | {detection['gps'][0]:.6f} | {detection['gps'][1]:.6f} | 5.0 | 12 | 60 | {log_path} |"
|
| 493 |
)
|
| 494 |
|
| 495 |
-
|
| 496 |
"",
|
| 497 |
"## 8. Processed Video",
|
| 498 |
f"- Path: outputs/processed_output.mp4",
|
|
@@ -510,9 +424,9 @@ def generate_report(
|
|
| 510 |
])
|
| 511 |
|
| 512 |
for entry in log_entries[-10:]:
|
| 513 |
-
|
| 514 |
|
| 515 |
-
|
| 516 |
"",
|
| 517 |
"## 11. Stakeholder Validation",
|
| 518 |
"- AE/IE Comments: [Pending]",
|
|
@@ -531,44 +445,12 @@ def generate_report(
|
|
| 531 |
])
|
| 532 |
|
| 533 |
try:
|
| 534 |
-
|
| 535 |
-
with open(tex_path, 'w') as f:
|
| 536 |
f.write("\n".join(report_content))
|
| 537 |
-
log_entries.append(f"
|
| 538 |
-
|
| 539 |
-
# Compiling LaTeX to PDF using latexmk
|
| 540 |
-
result = subprocess.run(
|
| 541 |
-
["latexmk", "-pdf", "-interaction=nonstopmode", tex_path],
|
| 542 |
-
cwd=OUTPUT_DIR,
|
| 543 |
-
capture_output=True,
|
| 544 |
-
text=True
|
| 545 |
-
)
|
| 546 |
-
if result.returncode == 0:
|
| 547 |
-
log_entries.append(f"PDF report generated: {report_path}")
|
| 548 |
-
if os.path.exists(report_path):
|
| 549 |
-
log_entries.append(f"Confirmed report file exists: {report_path}")
|
| 550 |
-
return report_path
|
| 551 |
-
else:
|
| 552 |
-
log_entries.append(f"Error: PDF report not found at {report_path}")
|
| 553 |
-
else:
|
| 554 |
-
log_entries.append(f"Error: LaTeX compilation failed: {result.stderr}")
|
| 555 |
except Exception as e:
|
| 556 |
-
log_entries.append(f"Error: Failed to
|
| 557 |
-
|
| 558 |
-
# Fallback: Generate Markdown report if PDF fails
|
| 559 |
-
log_entries.append("Falling back to Markdown report due to PDF generation failure")
|
| 560 |
-
try:
|
| 561 |
-
with open(md_path, 'w') as f:
|
| 562 |
-
f.write("\n".join(md_report_content))
|
| 563 |
-
log_entries.append(f"Markdown report saved: {md_path}")
|
| 564 |
-
if os.path.exists(md_path):
|
| 565 |
-
log_entries.append(f"Confirmed Markdown report file exists: {md_path}")
|
| 566 |
-
return md_path
|
| 567 |
-
else:
|
| 568 |
-
log_entries.append(f"Error: Markdown report not found at {md_path}")
|
| 569 |
-
return ""
|
| 570 |
-
except Exception as e:
|
| 571 |
-
log_entries.append(f"Error: Failed to save Markdown report: {str(e)}")
|
| 572 |
return ""
|
| 573 |
|
| 574 |
def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
@@ -791,5 +673,228 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
|
| 791 |
]
|
| 792 |
)
|
| 793 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 794 |
if __name__ == "__main__":
|
| 795 |
iface.launch()
|
|
|
|
| 14 |
from ultralytics import YOLO
|
| 15 |
import piexif
|
| 16 |
import zipfile
|
|
|
|
| 17 |
|
| 18 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
| 19 |
logging.basicConfig(filename="app.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
|
|
| 46 |
zip_path = os.path.join(OUTPUT_DIR, f"drone_analysis_outputs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip")
|
| 47 |
try:
|
| 48 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 49 |
+
if os.path.exists(report_path):
|
|
|
|
| 50 |
zipf.write(report_path, os.path.basename(report_path))
|
| 51 |
+
if os.path.exists(video_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
zipf.write(video_path, os.path.join("outputs", os.path.basename(video_path)))
|
| 53 |
+
if os.path.exists(chart_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
zipf.write(chart_path, os.path.join("outputs", os.path.basename(chart_path)))
|
| 55 |
+
if os.path.exists(map_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
zipf.write(map_path, os.path.join("outputs", os.path.basename(map_path)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
for file in detected_issues:
|
| 58 |
if os.path.exists(file):
|
| 59 |
zipf.write(file, os.path.join("captured_frames", os.path.basename(file)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
for root, _, files in os.walk(FLIGHT_LOG_DIR):
|
| 61 |
for file in files:
|
| 62 |
file_path = os.path.join(root, file)
|
| 63 |
+
zipf.write(file_path, os.path.join("flight_logs", file))
|
| 64 |
+
log_entries.append(f"Created ZIP: {zip_path}")
|
| 65 |
+
return zip_path
|
| 66 |
+
except Exception as e:
|
| 67 |
+
log_entries.append(f"Error: Failed to create ZIP: {str(e)}")
|
| 68 |
+
return ""
|
| 69 |
+
|
| 70 |
+
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
|
| 71 |
+
map_path = os.path.join(OUTPUT_DIR, f"map_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
|
| 72 |
+
plt.figure(figsize=(4, 4))
|
| 73 |
+
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
|
| 74 |
+
plt.title("Issue Locations Map")
|
| 75 |
+
plt.xlabel("Longitude")
|
| 76 |
+
plt.ylabel("Latitude")
|
| 77 |
+
plt.legend()
|
| 78 |
+
plt.savefig(map_path)
|
| 79 |
+
plt.close()
|
| 80 |
+
return map_path
|
| 81 |
+
|
| 82 |
+
def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
|
| 83 |
+
try:
|
| 84 |
+
lat = abs(gps_coord[0])
|
| 85 |
+
lon = abs(gps_coord[1])
|
| 86 |
+
lat_ref = "N" if gps_coord[0] >= 0 else "S"
|
| 87 |
+
lon_ref = "E" if gps_coord[1] >= 0 else "W"
|
| 88 |
+
exif_dict = piexif.load(image_path) if os.path.exists(image_path) else {"GPS": {}}
|
| 89 |
+
exif_dict["GPS"] = {
|
| 90 |
+
piexif.GPSIFD.GPSLatitudeRef: lat_ref,
|
| 91 |
+
piexif.GPSIFD.GPSLatitude: ((int(lat), 1), (0, 1), (0, 1)),
|
| 92 |
+
piexif.GPSIFD.GPSLongitudeRef: lon_ref,
|
| 93 |
+
piexif.GPSIFD.GPSLongitude: ((int(lon), 1), (0, 1), (0, 1))
|
| 94 |
+
}
|
| 95 |
+
piexif.insert(piexif.dump(exif_dict), image_path)
|
| 96 |
+
return True
|
| 97 |
+
except Exception as e:
|
| 98 |
+
log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}")
|
| 99 |
+
return False
|
| 100 |
+
|
| 101 |
+
def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str:
|
| 102 |
+
log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv")
|
| 103 |
+
try:
|
| 104 |
+
with open(log_path, 'w', newline='') as csvfile:
|
| 105 |
+
writer = csv.writer(csvfile)
|
| 106 |
+
writer.writerow(["Frame", "Timestamp", "Latitude", "Longitude", "Speed_ms", "Satellites", "Altitude_m"])
|
| 107 |
+
writer.writerow([frame_count, timestamp, gps_coord[0], gps_coord[1], 5.0, 12, 60])
|
| 108 |
+
return log_path
|
| 109 |
+
except Exception as e:
|
| 110 |
+
log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}")
|
| 111 |
+
return ""
|
| 112 |
+
|
| 113 |
+
def check_image_quality(frame: np.ndarray, input_resolution: int) -> bool:
|
| 114 |
+
height, width, _ = frame.shape
|
| 115 |
+
frame_resolution = width * height
|
| 116 |
+
if frame_resolution < 12_000_000:
|
| 117 |
+
log_entries.append(f"Frame {frame_count}: Resolution {width}x{height} below 12MP")
|
| 118 |
+
return False
|
| 119 |
+
if frame_resolution < input_resolution:
|
| 120 |
+
log_entries.append(f"Frame {frame_count}: Output resolution below input")
|
| 121 |
+
return False
|
| 122 |
+
return True
|
| 123 |
+
|
| 124 |
+
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 125 |
+
counts = Counter([det["label"] for det in detections])
|
| 126 |
+
return {
|
| 127 |
+
"items": [{"type": k, "count": v} for k, v in counts.items()],
|
| 128 |
+
"total_detections": len(detections),
|
| 129 |
+
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
def generate_line_chart() -> Optional[str]:
|
| 133 |
+
if not detected_counts:
|
| 134 |
+
return None
|
| 135 |
+
plt.figure(figsize=(4, 2))
|
| 136 |
+
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
|
| 137 |
+
plt.title("Detections Over Time")
|
| 138 |
+
plt.xlabel("Frame")
|
| 139 |
+
plt.ylabel("Count")
|
| 140 |
+
plt.grid(True)
|
| 141 |
+
plt.tight_layout()
|
| 142 |
+
chart_path = os.path.join(OUTPUT_DIR, f"chart_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
|
| 143 |
+
plt.savefig(chart_path)
|
| 144 |
+
plt.close()
|
| 145 |
+
return chart_path
|
| 146 |
|
| 147 |
+
import cv2
|
| 148 |
+
import torch
|
| 149 |
+
import gradio as gr
|
| 150 |
+
import numpy as np
|
| 151 |
+
import os
|
| 152 |
+
import json
|
| 153 |
+
import logging
|
| 154 |
+
import matplotlib.pyplot as plt
|
| 155 |
+
import csv
|
| 156 |
+
import time
|
| 157 |
+
from datetime import datetime
|
| 158 |
+
from collections import Counter
|
| 159 |
+
from typing import List, Dict, Any, Optional
|
| 160 |
+
from ultralytics import YOLO
|
| 161 |
+
import piexif
|
| 162 |
+
import zipfile
|
| 163 |
+
|
| 164 |
+
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
| 165 |
+
logging.basicConfig(filename="app.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 166 |
+
|
| 167 |
+
CAPTURED_FRAMES_DIR = "captured_frames"
|
| 168 |
+
OUTPUT_DIR = "outputs"
|
| 169 |
+
FLIGHT_LOG_DIR = "flight_logs"
|
| 170 |
+
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
|
| 171 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 172 |
+
os.makedirs(FLIGHT_LOG_DIR, exist_ok=True)
|
| 173 |
+
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
|
| 174 |
+
os.chmod(OUTPUT_DIR, 0o777)
|
| 175 |
+
os.chmod(FLIGHT_LOG_DIR, 0o777)
|
| 176 |
+
|
| 177 |
+
log_entries: List[str] = []
|
| 178 |
+
detected_counts: List[int] = []
|
| 179 |
+
detected_issues: List[str] = []
|
| 180 |
+
gps_coordinates: List[List[float]] = []
|
| 181 |
+
last_metrics: Dict[str, Any] = {}
|
| 182 |
+
frame_count: int = 0
|
| 183 |
+
SAVE_IMAGE_INTERVAL = 1
|
| 184 |
+
DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"]
|
| 185 |
+
|
| 186 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 187 |
+
model = YOLO('./data/best.pt').to(device)
|
| 188 |
+
if device == "cuda":
|
| 189 |
+
model.half()
|
| 190 |
+
|
| 191 |
+
def zip_all_outputs(report_path: str, video_path: str, chart_path: str, map_path: str) -> str:
|
| 192 |
+
zip_path = os.path.join(OUTPUT_DIR, f"drone_analysis_outputs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip")
|
| 193 |
+
try:
|
| 194 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 195 |
+
if os.path.exists(report_path):
|
| 196 |
+
zipf.write(report_path, os.path.basename(report_path))
|
| 197 |
+
if os.path.exists(video_path):
|
| 198 |
+
zipf.write(video_path, os.path.join("outputs", os.path.basename(video_path)))
|
| 199 |
+
if os.path.exists(chart_path):
|
| 200 |
+
zipf.write(chart_path, os.path.join("outputs", os.path.basename(chart_path)))
|
| 201 |
+
if os.path.exists(map_path):
|
| 202 |
+
zipf.write(map_path, os.path.join("outputs", os.path.basename(map_path)))
|
| 203 |
+
for file in detected_issues:
|
| 204 |
+
if os.path.exists(file):
|
| 205 |
+
zipf.write(file, os.path.join("captured_frames", os.path.basename(file)))
|
| 206 |
+
for root, _, files in os.walk(FLIGHT_LOG_DIR):
|
| 207 |
+
for file in files:
|
| 208 |
+
file_path = os.path.join(root, file)
|
| 209 |
+
zipf.write(file_path, os.path.join("flight_logs", file))
|
| 210 |
log_entries.append(f"Created ZIP: {zip_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
return zip_path
|
| 212 |
except Exception as e:
|
| 213 |
log_entries.append(f"Error: Failed to create ZIP: {str(e)}")
|
|
|
|
| 308 |
inference_times: List[float],
|
| 309 |
io_times: List[float]
|
| 310 |
) -> str:
|
|
|
|
| 311 |
log_entries.append("Generating report...")
|
| 312 |
+
report_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
| 313 |
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
report_content = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
"# NHAI Drone Survey Analysis Report",
|
| 316 |
"",
|
| 317 |
"## Project Details",
|
|
|
|
| 357 |
|
| 358 |
for item in metrics.get("items", []):
|
| 359 |
percentage = (item["count"] / metrics["total_detections"] * 100) if metrics["total_detections"] > 0 else 0
|
| 360 |
+
report_content.append(f" - {item['type']}: {item['count']} ({percentage:.2f}%)")
|
| 361 |
+
report_content.extend([
|
| 362 |
f"- Processing Time: {total_time:.2f} seconds",
|
| 363 |
f"- Average Frame Time: {sum(frame_times)/len(frame_times):.2f} ms" if frame_times else "- Average Frame Time: N/A",
|
| 364 |
f"- Average Resize Time: {sum(resize_times)/len(resize_times):.2f} ms" if resize_times else "- Average Resize Time: N/A",
|
|
|
|
| 369 |
"",
|
| 370 |
"## 5. Output File Structure",
|
| 371 |
"- ZIP file contains:",
|
| 372 |
+
" - `drone_analysis_report_<timestamp>.md`: This report",
|
| 373 |
" - `outputs/processed_output.mp4`: Processed video with annotations",
|
| 374 |
+
" - `outputs/chart_<timestamp>.png`: Detection trend chart",
|
| 375 |
+
" - `outputs/map_<timestamp>.png`: Issue locations map",
|
| 376 |
" - `captured_frames/detected_<frame>.jpg`: Geotagged images for detected issues",
|
| 377 |
" - `flight_logs/flight_log_<frame>.csv`: Flight logs matching image frames",
|
| 378 |
"- Note: Images and logs share frame numbers (e.g., `detected_000001.jpg` corresponds to `flight_log_000001.csv`).",
|
|
|
|
| 386 |
])
|
| 387 |
|
| 388 |
for detection in all_detections[:100]:
|
| 389 |
+
report_content.append(
|
| 390 |
f"| {detection['frame']:06d} | {detection['label']} | ({detection['gps'][0]:.6f}, {detection['gps'][1]:.6f}) | {detection['timestamp']} | {detection['conf']:.2f} | captured_frames/{os.path.basename(detection['path'])} |"
|
| 391 |
)
|
| 392 |
|
| 393 |
+
report_content.extend([
|
| 394 |
"",
|
| 395 |
"## 7. Flight Logs",
|
| 396 |
f"- Total Logs: {len(detected_issues)}",
|
|
|
|
| 402 |
|
| 403 |
for detection in all_detections[:100]:
|
| 404 |
log_path = f"flight_logs/flight_log_{detection['frame']:06d}.csv"
|
| 405 |
+
report_content.append(
|
| 406 |
f"| {detection['frame']:06d} | {detection['timestamp']} | {detection['gps'][0]:.6f} | {detection['gps'][1]:.6f} | 5.0 | 12 | 60 | {log_path} |"
|
| 407 |
)
|
| 408 |
|
| 409 |
+
report_content.extend([
|
| 410 |
"",
|
| 411 |
"## 8. Processed Video",
|
| 412 |
f"- Path: outputs/processed_output.mp4",
|
|
|
|
| 424 |
])
|
| 425 |
|
| 426 |
for entry in log_entries[-10:]:
|
| 427 |
+
report_content.append(f" - {entry}")
|
| 428 |
|
| 429 |
+
report_content.extend([
|
| 430 |
"",
|
| 431 |
"## 11. Stakeholder Validation",
|
| 432 |
"- AE/IE Comments: [Pending]",
|
|
|
|
| 445 |
])
|
| 446 |
|
| 447 |
try:
|
| 448 |
+
with open(report_path, 'w') as f:
|
|
|
|
| 449 |
f.write("\n".join(report_content))
|
| 450 |
+
log_entries.append(f"Report saved: {report_path}")
|
| 451 |
+
return report_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 452 |
except Exception as e:
|
| 453 |
+
log_entries.append(f"Error: Failed to save report: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
return ""
|
| 455 |
|
| 456 |
def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
|
|
| 673 |
]
|
| 674 |
)
|
| 675 |
|
| 676 |
+
if __name__ == "__main__":
|
| 677 |
+
iface.launch()
|
| 678 |
+
|
| 679 |
+
def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
| 680 |
+
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
|
| 681 |
+
frame_count = 0
|
| 682 |
+
detected_counts.clear()
|
| 683 |
+
detected_issues.clear()
|
| 684 |
+
gps_coordinates.clear()
|
| 685 |
+
log_entries.clear()
|
| 686 |
+
last_metrics = {}
|
| 687 |
+
|
| 688 |
+
if video is None:
|
| 689 |
+
log_entries.append("Error: No video uploaded")
|
| 690 |
+
return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None
|
| 691 |
+
|
| 692 |
+
log_entries.append("Starting video processing...")
|
| 693 |
+
start_time = time.time()
|
| 694 |
+
cap = cv2.VideoCapture(video)
|
| 695 |
+
if not cap.isOpened():
|
| 696 |
+
log_entries.append("Error: Could not open video file")
|
| 697 |
+
return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None
|
| 698 |
+
|
| 699 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 700 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 701 |
+
input_resolution = frame_width * frame_height
|
| 702 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 703 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 704 |
+
log_entries.append(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames")
|
| 705 |
+
|
| 706 |
+
out_width, out_height = resize_width, resize_height
|
| 707 |
+
output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4")
|
| 708 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (out_width, out_height))
|
| 709 |
+
if not out.isOpened():
|
| 710 |
+
log_entries.append("Error: Failed to initialize mp4v codec")
|
| 711 |
+
cap.release()
|
| 712 |
+
return None, json.dumps({"error": "mp4v codec failed"}, indent=2), "\n".join(log_entries), [], None, None, None
|
| 713 |
+
|
| 714 |
+
processed_frames = 0
|
| 715 |
+
all_detections = []
|
| 716 |
+
frame_times = []
|
| 717 |
+
inference_times = []
|
| 718 |
+
resize_times = []
|
| 719 |
+
io_times = []
|
| 720 |
+
detection_frame_count = 0
|
| 721 |
+
output_frame_count = 0
|
| 722 |
+
last_annotated_frame = None
|
| 723 |
+
|
| 724 |
+
while True:
|
| 725 |
+
ret, frame = cap.read()
|
| 726 |
+
if not ret:
|
| 727 |
+
break
|
| 728 |
+
frame_count += 1
|
| 729 |
+
if frame_count % frame_skip != 0:
|
| 730 |
+
continue
|
| 731 |
+
processed_frames += 1
|
| 732 |
+
frame_start = time.time()
|
| 733 |
+
|
| 734 |
+
frame = cv2.resize(frame, (out_width, out_height))
|
| 735 |
+
resize_times.append((time.time() - frame_start) * 1000)
|
| 736 |
+
|
| 737 |
+
if not check_image_quality(frame, input_resolution):
|
| 738 |
+
continue
|
| 739 |
+
|
| 740 |
+
inference_start = time.time()
|
| 741 |
+
results = model(frame, verbose=False, conf=0.5, iou=0.7)
|
| 742 |
+
annotated_frame = results[0].plot()
|
| 743 |
+
inference_times.append((time.time() - inference_start) * 1000)
|
| 744 |
+
|
| 745 |
+
frame_timestamp = frame_count / fps if fps > 0 else 0
|
| 746 |
+
timestamp_str = f"{int(frame_timestamp // 60)}:{int(frame_timestamp % 60):02d}"
|
| 747 |
+
|
| 748 |
+
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
|
| 749 |
+
gps_coordinates.append(gps_coord)
|
| 750 |
+
|
| 751 |
+
io_start = time.time()
|
| 752 |
+
frame_detections = []
|
| 753 |
+
for detection in results[0].boxes:
|
| 754 |
+
cls = int(detection.cls)
|
| 755 |
+
conf = float(detection.conf)
|
| 756 |
+
box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
|
| 757 |
+
label = model.names[cls]
|
| 758 |
+
if label in DETECTION_CLASSES:
|
| 759 |
+
frame_detections.append({
|
| 760 |
+
"label": label,
|
| 761 |
+
"box": box,
|
| 762 |
+
"conf": conf,
|
| 763 |
+
"gps": gps_coord,
|
| 764 |
+
"timestamp": timestamp_str,
|
| 765 |
+
"frame": frame_count,
|
| 766 |
+
"path": os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
|
| 767 |
+
})
|
| 768 |
+
log_entries.append(f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}")
|
| 769 |
+
|
| 770 |
+
if frame_detections:
|
| 771 |
+
detection_frame_count += 1
|
| 772 |
+
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
|
| 773 |
+
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
|
| 774 |
+
if cv2.imwrite(captured_frame_path, annotated_frame):
|
| 775 |
+
if write_geotag(captured_frame_path, gps_coord):
|
| 776 |
+
detected_issues.append(captured_frame_path)
|
| 777 |
+
if len(detected_issues) > 1000: # Limit to 1000 images
|
| 778 |
+
detected_issues.pop(0)
|
| 779 |
+
else:
|
| 780 |
+
log_entries.append(f"Frame {frame_count}: Geotagging failed")
|
| 781 |
+
else:
|
| 782 |
+
log_entries.append(f"Error: Failed to save {captured_frame_path}")
|
| 783 |
+
flight_log_path = write_flight_log(frame_count, gps_coord, timestamp_str)
|
| 784 |
+
|
| 785 |
+
io_times.append((time.time() - io_start) * 1000)
|
| 786 |
+
|
| 787 |
+
out.write(annotated_frame)
|
| 788 |
+
output_frame_count += 1
|
| 789 |
+
last_annotated_frame = annotated_frame
|
| 790 |
+
if frame_skip > 1:
|
| 791 |
+
for _ in range(frame_skip - 1):
|
| 792 |
+
out.write(annotated_frame)
|
| 793 |
+
output_frame_count += 1
|
| 794 |
+
|
| 795 |
+
detected_counts.append(len(frame_detections))
|
| 796 |
+
all_detections.extend(frame_detections)
|
| 797 |
+
|
| 798 |
+
frame_times.append((time.time() - frame_start) * 1000)
|
| 799 |
+
if len(log_entries) > 50:
|
| 800 |
+
log_entries.pop(0)
|
| 801 |
+
|
| 802 |
+
if time.time() - start_time > 600:
|
| 803 |
+
log_entries.append("Error: Processing timeout after 600 seconds")
|
| 804 |
+
break
|
| 805 |
+
|
| 806 |
+
while output_frame_count < total_frames and last_annotated_frame is not None:
|
| 807 |
+
out.write(last_annotated_frame)
|
| 808 |
+
output_frame_count += 1
|
| 809 |
+
|
| 810 |
+
last_metrics = update_metrics(all_detections)
|
| 811 |
+
|
| 812 |
+
cap.release()
|
| 813 |
+
out.release()
|
| 814 |
+
|
| 815 |
+
cap = cv2.VideoCapture(output_path)
|
| 816 |
+
output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 817 |
+
output_fps = cap.get(cv2.CAP_PROP_FPS)
|
| 818 |
+
output_duration = output_frames / output_fps if output_fps > 0 else 0
|
| 819 |
+
cap.release()
|
| 820 |
+
|
| 821 |
+
total_time = time.time() - start_time
|
| 822 |
+
log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
| 823 |
+
|
| 824 |
+
log_entries.append("Generating chart and map...")
|
| 825 |
+
chart_path = generate_line_chart()
|
| 826 |
+
map_path = generate_map(gps_coordinates[-5:], all_detections)
|
| 827 |
+
|
| 828 |
+
report_path = generate_report(
|
| 829 |
+
last_metrics,
|
| 830 |
+
detected_issues,
|
| 831 |
+
gps_coordinates,
|
| 832 |
+
all_detections,
|
| 833 |
+
frame_count,
|
| 834 |
+
total_time,
|
| 835 |
+
output_frames,
|
| 836 |
+
output_fps,
|
| 837 |
+
output_duration,
|
| 838 |
+
detection_frame_count,
|
| 839 |
+
chart_path,
|
| 840 |
+
map_path,
|
| 841 |
+
frame_times,
|
| 842 |
+
resize_times,
|
| 843 |
+
inference_times,
|
| 844 |
+
io_times
|
| 845 |
+
)
|
| 846 |
+
|
| 847 |
+
log_entries.append("Creating output ZIP...")
|
| 848 |
+
output_zip_path = zip_all_outputs(report_path, output_path, chart_path, map_path)
|
| 849 |
+
|
| 850 |
+
log_entries.append(f"Processing completed in {total_time:.2f} seconds")
|
| 851 |
+
return (
|
| 852 |
+
output_path,
|
| 853 |
+
json.dumps(last_metrics, indent=2),
|
| 854 |
+
"\n".join(log_entries[-10:]),
|
| 855 |
+
detected_issues,
|
| 856 |
+
chart_path,
|
| 857 |
+
map_path,
|
| 858 |
+
output_zip_path
|
| 859 |
+
)
|
| 860 |
+
|
| 861 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
| 862 |
+
gr.Markdown("# NHAI Road Defect Detection Dashboard")
|
| 863 |
+
with gr.Row():
|
| 864 |
+
with gr.Column(scale=3):
|
| 865 |
+
video_input = gr.Video(label="Upload Video (12MP recommended)")
|
| 866 |
+
width_slider = gr.Slider(320, 4000, value=4000, label="Output Width", step=1)
|
| 867 |
+
height_slider = gr.Slider(240, 3000, value=3000, label="Output Height", step=1)
|
| 868 |
+
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
|
| 869 |
+
process_btn = gr.Button("Process Video", variant="primary")
|
| 870 |
+
with gr.Column(scale=1):
|
| 871 |
+
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
|
| 872 |
+
with gr.Row():
|
| 873 |
+
video_output = gr.Video(label="Processed Video")
|
| 874 |
+
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
|
| 875 |
+
with gr.Row():
|
| 876 |
+
chart_output = gr.Image(label="Detection Trend")
|
| 877 |
+
map_output = gr.Image(label="Issue Locations Map")
|
| 878 |
+
with gr.Row():
|
| 879 |
+
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
|
| 880 |
+
with gr.Row():
|
| 881 |
+
gr.Markdown("## Download Results")
|
| 882 |
+
with gr.Row():
|
| 883 |
+
output_zip_download = gr.File(label="Download All Outputs (ZIP)")
|
| 884 |
+
|
| 885 |
+
process_btn.click(
|
| 886 |
+
fn=process_video,
|
| 887 |
+
inputs=[video_input, width_slider, height_slider, skip_slider],
|
| 888 |
+
outputs=[
|
| 889 |
+
video_output,
|
| 890 |
+
metrics_output,
|
| 891 |
+
logs_output,
|
| 892 |
+
issue_gallery,
|
| 893 |
+
chart_output,
|
| 894 |
+
map_output,
|
| 895 |
+
output_zip_download
|
| 896 |
+
]
|
| 897 |
+
)
|
| 898 |
+
|
| 899 |
if __name__ == "__main__":
|
| 900 |
iface.launch()
|