Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| import cv2 | |
| from ultralytics import YOLO | |
| # Load YOLO models | |
| def safe_load_yolo_model(path): | |
| torch.serialization.add_safe_globals([torch, 'ultralytics.nn.tasks.DetectionModel']) | |
| return YOLO(path) | |
| # Dictionary of model paths | |
| model_paths = { | |
| 'YOLOv11': './data/yolo11n.pt', | |
| 'Crack & Pothole Detector': './data/best.pt', | |
| 'Toll gates': './data/best2.pt' | |
| } | |
| # Load models into memory | |
| models = {name: safe_load_yolo_model(path) for name, path in model_paths.items()} | |
| # Assign colors for each model | |
| model_colors = { | |
| 'YOLOv11': (0, 255, 0), | |
| 'Crack & Pothole Detector': (255, 0, 0), | |
| 'Toll gates': (0, 0, 255) | |
| } | |
| def process_video(video, selected_model): | |
| cap = cv2.VideoCapture(video) | |
| fps = cap.get(cv2.CAP_PROP_FPS) | |
| frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| out = cv2.VideoWriter('output_video.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height)) | |
| use_models = models if selected_model == 'All' else {selected_model: models[selected_model]} | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| for model_name, model in use_models.items(): | |
| results = model(frame) | |
| for result in results: | |
| for box in result.boxes: | |
| x1, y1, x2, y2 = map(int, box.xyxy[0].tolist()) | |
| class_id = int(box.cls[0]) | |
| label = f"{model.names[class_id]} - {box.conf[0]:.2f}" | |
| color = model_colors.get(model_name, (0, 255, 255)) | |
| cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2) | |
| cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2) | |
| out.write(frame) | |
| cap.release() | |
| out.release() | |
| return 'output_video.mp4' | |
| # Gradio Interface | |
| iface = gr.Interface( | |
| fn=process_video, | |
| inputs=[ | |
| gr.Video(label="Upload a Video"), | |
| gr.Dropdown( | |
| choices=["All"] + list(model_paths.keys()), | |
| label="Select Model(s)", | |
| value="All" | |
| ) | |
| ], | |
| outputs=gr.Video(label="Processed Output"), | |
| live=False, | |
| title="Multi-Model YOLOv8 Video Inference" | |
| ) | |
| iface.launch() | |