Spaces:
Runtime error
Runtime error
process images
Browse files- data/actors_embeddings.csv +3 -0
- process_images.py +10 -6
data/actors_embeddings.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8b2d6501a7fa59db2646f9d0438afe0e07358bd7d66eb00199227b3af2d1e26f
|
| 3 |
+
size 54033196
|
process_images.py
CHANGED
|
@@ -3,6 +3,7 @@ import requests
|
|
| 3 |
import pandas as pd
|
| 4 |
from io import BytesIO
|
| 5 |
from tqdm import tqdm
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def get_image(url: str):
|
|
@@ -14,7 +15,8 @@ def get_image(url: str):
|
|
| 14 |
def get_embeddings(url: str):
|
| 15 |
try:
|
| 16 |
image = get_image(url)
|
| 17 |
-
|
|
|
|
| 18 |
except Exception as e:
|
| 19 |
print(e)
|
| 20 |
|
|
@@ -32,12 +34,14 @@ def process_all_images(input_file, output_file):
|
|
| 32 |
df = df.sample(frac=1) # shuffle so you get some images for everybody while it's running
|
| 33 |
for i, row in tqdm(df.iterrows(), total=df.shape[0]):
|
| 34 |
embeddings = get_embeddings(row["contentUrl"])
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 39 |
df_emb.to_csv(output_file, index=False)
|
| 40 |
-
|
|
|
|
| 41 |
return df_emb
|
| 42 |
|
| 43 |
def build_annoy_index():
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
from io import BytesIO
|
| 5 |
from tqdm import tqdm
|
| 6 |
+
from time import time
|
| 7 |
|
| 8 |
|
| 9 |
def get_image(url: str):
|
|
|
|
| 15 |
def get_embeddings(url: str):
|
| 16 |
try:
|
| 17 |
image = get_image(url)
|
| 18 |
+
embeddings = face_recognition.face_encodings(image, num_jitters=2, model="large")
|
| 19 |
+
return list(embeddings[0])
|
| 20 |
except Exception as e:
|
| 21 |
print(e)
|
| 22 |
|
|
|
|
| 34 |
df = df.sample(frac=1) # shuffle so you get some images for everybody while it's running
|
| 35 |
for i, row in tqdm(df.iterrows(), total=df.shape[0]):
|
| 36 |
embeddings = get_embeddings(row["contentUrl"])
|
| 37 |
+
new_row = row.copy()
|
| 38 |
+
new_row["embeddings"] = embeddings
|
| 39 |
+
df_emb = df_emb.append(new_row, ignore_index=True)
|
| 40 |
+
|
| 41 |
+
if i % 5 == 0:
|
| 42 |
df_emb.to_csv(output_file, index=False)
|
| 43 |
+
|
| 44 |
+
df_emb.to_csv(output_file, index=False)
|
| 45 |
return df_emb
|
| 46 |
|
| 47 |
def build_annoy_index():
|