Spaces:
Running
Running
File size: 7,264 Bytes
60efa5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# DeepDefend
> **Multi-Modal Deepfake Detection System**
> Detect AI-generated deepfakes in videos using computer vision and audio analysis
[](https://www.python.org/downloads/)
[](https://fastapi.tiangolo.com)
## Overview
DeepDefend is a comprehensive deepfake detection system that combines **video frame analysis** and **audio analysis** to identify AI-generated synthetic media. Using machine learning models and AI-powered evidence fusion, it provides detailed, interval-by-interval analysis with explainable results.
### Why DeepDefend?
- **Multi-Modal Analysis**: Combines video and audio detection for higher accuracy
- **AI-Powered Fusion**: Uses LLM to generate human-readable reports
- **Interval Breakdown**: Shows exactly which parts of the video are suspicious
- **REST API**: Easy integration with any frontend or application
## Features
### Core Detection Capabilities
- **Video Analysis**
- Frame-by-frame deepfake detection using pre-trained models
- Face detection and region-specific analysis
- Suspicious region identification (eyes, mouth, face boundaries)
- Confidence scoring per frame
- **Audio Analysis**
- Voice synthesis detection
- Spectrogram analysis for audio artifacts
- Frequency pattern recognition
- Audio splicing detection
- **AI-Powered Reporting**
- LLM-based evidence fusion (Google Gemini)
- Natural language explanation of findings
- Verdict with confidence percentage
- Timestamped suspicious intervals
### Processing Pipeline
```
Video Input
β
βββββββββββββββββββββ
β Media Extraction β β Extract frames (5 per interval)
β β β Extract audio chunks
ββββββββββ¬βββββββββββ
β
ββββββββββββββββββββββββ¬βββββββββββββββββββββββ
βΌ βΌ βΌ
βββββββββββββββββββ βββββββββββββββββββ ββββββββββββββββββ
β Video Analysis β β Audio Analysis β β Timeline Gen β
β β’ Face detect β β β’ Spectrogram β β β’ 2s intervals β
β β’ Region scan β β β’ Voice synth β β β’ Metadata β
β β’ Fake score β β β’ Artifacts β β β
ββββββββββ¬βββββββββ ββββββββββ¬βββββββββ ββββββββββ¬ββββββββ
β β β
ββββββββββββββββ¬βββββββββββββββ¬ββββββββββββββ
βΌ βΌ
ββββββββββββββββββββββββββββ
β LLM Fusion Engine β
β β’ Combine evidence β
β β’ Generate verdict β
β β’ Natural language reportβ
ββββββββββββββ¬ββββββββββββββ
βΌ
Final Report
(JSON Response)
```
## Demo
### Live Demo
**API**: [https://deepdefend-api.hf.space](https://deepdefend-api.hf.space)
**Docs**: [https://deepdefend-api.hf.space/docs](https://deepdefend-api.hf.space/docs)
### Example Analysis
<details>
<summary>Click to see sample output</summary>
```json
{
"verdict": "DEEPFAKE",
"confidence": 87.5,
"overall_scores": {
"overall_video_score": 0.823,
"overall_audio_score": 0.756,
"overall_combined_score": 0.789
},
"detailed_analysis": "This video shows strong indicators of deepfake manipulation...",
"suspicious_intervals": [
{
"interval": "4.0-6.0",
"video_score": 0.891,
"audio_score": 0.834,
"video_regions": ["eyes", "mouth"],
"audio_regions": ["voice_synthesis_artifacts"]
}
],
"total_intervals_analyzed": 15,
"video_info": {
"duration": 12.498711111111112,
"fps": 29.923085402583734,
"total_frames": 374,
"file_size_mb": 31.36
},
"analysis_id": "4cd98ea5-8c14-4cae-8da4-689345b0aabc",
"timestamp": "2025-10-10T23:34:35.724916"
}
```
</details>
## Installation
### Prerequisites
- Python 3.10 or higher
- FFmpeg installed on your system
- Google Gemini API key
### Local Setup
1. **Clone the repository**
```bash
git clone https://github.com/yourusername/deepdefend.git
```
2. **Create virtual environment**
```bash
python -m venv venv
# On Linux/Mac
source venv/bin/activate
# On Windows
venv\Scripts\activate
```
3. **Install dependencies**
```bash
pip install -r requirements.txt
```
4. **Download ML models**
```bash
python models/download_model.py
```
*This will download ~2GB of models from Hugging Face*
5. **Configure environment**
```bash
cp .env.example .env
# Edit .env and add your GOOGLE_API_KEY
```
6. **Run the server**
```bash
uvicorn main:app --reload
```
The API will be available at `http://127.0.0.1:8000`
### Docker Setup
```bash
# Build image
docker build -t deepdefend .
# Run container
docker run -p 8000:8000 -e GOOGLE_API_KEY=your_key deepdefend
```
## Tech Stack
### Backend
- **Framework**: FastAPI 0.109.0
- **Server**: Uvicorn
- **ML Framework**: PyTorch 2.3.1
- **Transformers**: Hugging Face Transformers 4.36.2
### ML Models
- **Video Detection**: [dima806/deepfake_vs_real_image_detection](https://huggingface.co/dima806/deepfake_vs_real_image_detection)
- **Audio Detection**: [mo-thecreator/Deepfake-audio-detection](https://huggingface.co/mo-thecreator/Deepfake-audio-detection)
- **LLM Fusion**: Google Gemini 2.5 Flash
### Processing
- **Computer Vision**: OpenCV, Pillow
- **Audio Processing**: Librosa, SoundFile
- **Video Processing**: FFmpeg
### Deployment
- **Container**: Docker
- **Platforms**: Hugging Face Spaces
## Project Structure
```
deepdefend/
β
βββ extraction/
β βββ media_extractor.py # Frame & audio extraction
β βββ timeline_generator.py # Timeline creation
β
βββ analysis/
β βββ video_analyser.py # Video deepfake detection
β βββ audio_analyser.py # Audio deepfake detection
β βββ llm_analyser.py # LLM-based fusion
β βββ prompt.py # LLM prompts
β
βββ models/
β βββ download_model.py # Model downloader
β βββ load_models.py # Model loader
β βββ video_model/ # (Downloaded)
β βββ audio_model/ # (Downloaded)
β
βββ main.py # FastAPI application
βββ pipeline.py # Main detection pipeline
βββ requirements.txt # Python dependencies
βββ Dockerfile # Container configuration
βββ .gitignore
βββ README.md
```
|