from __future__ import annotations import numpy as np import torch from contextlib import nullcontext from transformers import AutoProcessor, SiglipModel from src.models.utils import l2norm_rows class SigLIPLinearProbe: def __init__(self, head_path): self.model_id = "google/siglip-so400m-patch14-384" self.device = "cuda" if torch.cuda.is_available() else "cpu" self.torch_dtype = torch.float16 if self.device == "cuda" else torch.float32 self.model = SiglipModel.from_pretrained(self.model_id, dtype=self.torch_dtype).to(self.device) self.model.eval().requires_grad_(False) self.processor = AutoProcessor.from_pretrained(self.model_id) npz = np.load(head_path) self.w = torch.from_numpy(npz["w"]).to(self.device).float() self.b = torch.from_numpy(npz["b"]).to(self.device).float() self.use_amp = False if self.device == "cuda": torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True self.use_amp = True @torch.inference_mode() def encode(self, pil_list) -> torch.Tensor: imgs = [im.convert("RGB") for im in pil_list] enc = self.processor(images=imgs, return_tensors="pt") x = enc["pixel_values"].to(self.device, non_blocking=True, memory_format=torch.channels_last) ctx = torch.amp.autocast("cuda", dtype=self.torch_dtype) if self.use_amp else nullcontext() with ctx: f = self.model.get_image_features(pixel_values=x) f = f.float() return l2norm_rows(f) @torch.inference_mode() def logits(self, pil_list) -> torch.Tensor: f = self.encode(pil_list) return (f @ self.w + self.b).squeeze(1) @torch.inference_mode() def prob(self, pil_list ) -> torch.Tensor: z = torch.clamp(self.logits(pil_list), -50, 50) return torch.sigmoid(z)