pixagram-dev / resampler_compatible.py
primerz's picture
Upload 11 files
f179fb3 verified
raw
history blame
3.88 kB
"""
Torch 2.0 Optimized Resampler - Compatible with InstantID weights
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
x = x.view(bs, length, heads, -1)
x = x.transpose(1, 2)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttentionTorch2(nn.Module):
"""Perceiver attention with torch 2.0 optimizations."""
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
self.use_torch2 = hasattr(F, "scaled_dot_product_attention")
def forward(self, x, latents):
x = self.norm1(x)
latents = self.norm2(latents)
b, l, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
if self.use_torch2:
out = F.scaled_dot_product_attention(
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False, scale=self.scale
)
else:
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1)
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
class ResamplerCompatible(nn.Module):
"""Resampler compatible with InstantID pretrained weights."""
def __init__(self, dim=1024, depth=8, dim_head=64, heads=16, num_queries=8,
embedding_dim=768, output_dim=1024, ff_mult=4):
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PerceiverAttentionTorch2(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]))
def forward(self, x):
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
def create_compatible_resampler(num_queries=4, embedding_dim=512, output_dim=2048,
device="cuda", dtype=torch.float16, quality_mode="balanced"):
"""Create Resampler compatible with InstantID weights."""
resampler = ResamplerCompatible(
dim=1024, depth=8, dim_head=64, heads=16, num_queries=num_queries,
embedding_dim=embedding_dim, output_dim=output_dim, ff_mult=4
)
return resampler.to(device, dtype=dtype)
Resampler = ResamplerCompatible
print("[OK] Compatible Resampler with Torch 2.0 loaded")