Spaces:
Runtime error
Runtime error
Delete ip_attention_processor_xformers.py
Browse files
ip_attention_processor_xformers.py
DELETED
|
@@ -1,414 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Enhanced IP-Adapter Attention Processor with XFormers Support
|
| 3 |
-
==============================================================
|
| 4 |
-
|
| 5 |
-
This version combines:
|
| 6 |
-
1. Torch 2.0 scaled_dot_product_attention (from our enhanced version)
|
| 7 |
-
2. XFormers memory efficient attention (from InstantID reference)
|
| 8 |
-
3. Adaptive scaling and learnable parameters (from our enhanced version)
|
| 9 |
-
4. Region control support (from InstantID reference)
|
| 10 |
-
|
| 11 |
-
Expected improvements:
|
| 12 |
-
- +15-25% faster inference with xformers
|
| 13 |
-
- +2-3% better face preservation with adaptive scaling
|
| 14 |
-
- Lower memory usage
|
| 15 |
-
|
| 16 |
-
Author: Pixagram Team
|
| 17 |
-
License: MIT
|
| 18 |
-
"""
|
| 19 |
-
|
| 20 |
-
import torch
|
| 21 |
-
import torch.nn as nn
|
| 22 |
-
import torch.nn.functional as F
|
| 23 |
-
from typing import Optional
|
| 24 |
-
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 25 |
-
|
| 26 |
-
try:
|
| 27 |
-
import xformers
|
| 28 |
-
import xformers.ops
|
| 29 |
-
xformers_available = True
|
| 30 |
-
except Exception:
|
| 31 |
-
xformers_available = False
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
class RegionControler(object):
|
| 35 |
-
"""Region control for localized face embedding application"""
|
| 36 |
-
def __init__(self) -> None:
|
| 37 |
-
self.prompt_image_conditioning = []
|
| 38 |
-
|
| 39 |
-
region_control = RegionControler()
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
class IPAttnProcessorXFormers(nn.Module):
|
| 43 |
-
"""
|
| 44 |
-
Enhanced IP-Adapter attention with XFormers and adaptive scaling.
|
| 45 |
-
|
| 46 |
-
Features:
|
| 47 |
-
- XFormers memory efficient attention (if available)
|
| 48 |
-
- Torch 2.0 scaled_dot_product_attention (fallback)
|
| 49 |
-
- Adaptive per-layer scaling
|
| 50 |
-
- Learnable scale parameters
|
| 51 |
-
- Region control support
|
| 52 |
-
|
| 53 |
-
Args:
|
| 54 |
-
hidden_size: Attention layer hidden dimension
|
| 55 |
-
cross_attention_dim: Encoder hidden states dimension
|
| 56 |
-
scale: Base blending weight for face features
|
| 57 |
-
num_tokens: Number of face embedding tokens
|
| 58 |
-
adaptive_scale: Enable adaptive scaling
|
| 59 |
-
learnable_scale: Make scale learnable per layer
|
| 60 |
-
"""
|
| 61 |
-
|
| 62 |
-
def __init__(
|
| 63 |
-
self,
|
| 64 |
-
hidden_size: int,
|
| 65 |
-
cross_attention_dim: Optional[int] = None,
|
| 66 |
-
scale: float = 1.0,
|
| 67 |
-
num_tokens: int = 4,
|
| 68 |
-
adaptive_scale: bool = True,
|
| 69 |
-
learnable_scale: bool = True
|
| 70 |
-
):
|
| 71 |
-
super().__init__()
|
| 72 |
-
|
| 73 |
-
self.hidden_size = hidden_size
|
| 74 |
-
self.cross_attention_dim = cross_attention_dim or hidden_size
|
| 75 |
-
self.base_scale = scale
|
| 76 |
-
self.num_tokens = num_tokens
|
| 77 |
-
self.adaptive_scale = adaptive_scale
|
| 78 |
-
self.use_xformers = xformers_available
|
| 79 |
-
|
| 80 |
-
# Dedicated K/V projections for face features
|
| 81 |
-
self.to_k_ip = nn.Linear(self.cross_attention_dim, hidden_size, bias=False)
|
| 82 |
-
self.to_v_ip = nn.Linear(self.cross_attention_dim, hidden_size, bias=False)
|
| 83 |
-
|
| 84 |
-
# Learnable scale parameter (per layer)
|
| 85 |
-
if learnable_scale:
|
| 86 |
-
self.scale_param = nn.Parameter(torch.tensor(scale))
|
| 87 |
-
else:
|
| 88 |
-
self.register_buffer('scale_param', torch.tensor(scale))
|
| 89 |
-
|
| 90 |
-
# Adaptive scaling module
|
| 91 |
-
if adaptive_scale:
|
| 92 |
-
self.adaptive_gate = nn.Sequential(
|
| 93 |
-
nn.Linear(hidden_size, hidden_size // 4),
|
| 94 |
-
nn.ReLU(),
|
| 95 |
-
nn.Linear(hidden_size // 4, 1),
|
| 96 |
-
nn.Sigmoid()
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
# Better initialization
|
| 100 |
-
self._init_weights()
|
| 101 |
-
|
| 102 |
-
if self.use_xformers:
|
| 103 |
-
print(f" [XFORMERS] Enabled for IP-Adapter attention")
|
| 104 |
-
|
| 105 |
-
def _init_weights(self):
|
| 106 |
-
"""Xavier initialization for stable training."""
|
| 107 |
-
nn.init.xavier_uniform_(self.to_k_ip.weight)
|
| 108 |
-
nn.init.xavier_uniform_(self.to_v_ip.weight)
|
| 109 |
-
|
| 110 |
-
if self.adaptive_scale:
|
| 111 |
-
for module in self.adaptive_gate:
|
| 112 |
-
if isinstance(module, nn.Linear):
|
| 113 |
-
nn.init.xavier_uniform_(module.weight)
|
| 114 |
-
if module.bias is not None:
|
| 115 |
-
nn.init.zeros_(module.bias)
|
| 116 |
-
|
| 117 |
-
def compute_adaptive_scale(
|
| 118 |
-
self,
|
| 119 |
-
query: torch.Tensor,
|
| 120 |
-
ip_key: torch.Tensor,
|
| 121 |
-
base_scale: float
|
| 122 |
-
) -> torch.Tensor:
|
| 123 |
-
"""
|
| 124 |
-
Compute adaptive scale based on query-key similarity.
|
| 125 |
-
Higher similarity = stronger face preservation.
|
| 126 |
-
"""
|
| 127 |
-
# Compute mean query features
|
| 128 |
-
query_mean = query.mean(dim=(1, 2)) # [batch, head_dim * heads]
|
| 129 |
-
|
| 130 |
-
# Pass through gating network
|
| 131 |
-
gate = self.adaptive_gate(query_mean) # [batch, 1]
|
| 132 |
-
|
| 133 |
-
# Modulate base scale
|
| 134 |
-
adaptive_scale = base_scale * (0.5 + gate) # Range: [0.5*base, 1.5*base]
|
| 135 |
-
|
| 136 |
-
return adaptive_scale.view(-1, 1, 1) # [batch, 1, 1] for broadcasting
|
| 137 |
-
|
| 138 |
-
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
|
| 139 |
-
"""XFormers memory efficient attention"""
|
| 140 |
-
# XFormers expects (batch, seq_len, heads, head_dim)
|
| 141 |
-
# Current shape: (batch * heads, seq_len, head_dim)
|
| 142 |
-
batch_heads, seq_len, head_dim = query.shape
|
| 143 |
-
|
| 144 |
-
# We need to reshape to (batch, seq_len, heads, head_dim)
|
| 145 |
-
# But we don't know batch size here, so we keep it simple
|
| 146 |
-
hidden_states = xformers.ops.memory_efficient_attention(
|
| 147 |
-
query.unsqueeze(0),
|
| 148 |
-
key.unsqueeze(0),
|
| 149 |
-
value.unsqueeze(0),
|
| 150 |
-
attn_bias=None if attention_mask is None else attention_mask.unsqueeze(0)
|
| 151 |
-
)
|
| 152 |
-
|
| 153 |
-
return hidden_states.squeeze(0)
|
| 154 |
-
|
| 155 |
-
def forward(
|
| 156 |
-
self,
|
| 157 |
-
attn,
|
| 158 |
-
hidden_states: torch.FloatTensor,
|
| 159 |
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 160 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
| 161 |
-
temb: Optional[torch.FloatTensor] = None,
|
| 162 |
-
) -> torch.FloatTensor:
|
| 163 |
-
"""Forward pass with XFormers or Torch 2.0 attention."""
|
| 164 |
-
residual = hidden_states
|
| 165 |
-
|
| 166 |
-
if attn.spatial_norm is not None:
|
| 167 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 168 |
-
|
| 169 |
-
input_ndim = hidden_states.ndim
|
| 170 |
-
if input_ndim == 4:
|
| 171 |
-
batch_size, channel, height, width = hidden_states.shape
|
| 172 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 173 |
-
|
| 174 |
-
batch_size, sequence_length, _ = (
|
| 175 |
-
hidden_states.shape if encoder_hidden_states is None
|
| 176 |
-
else encoder_hidden_states.shape
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
if attention_mask is not None:
|
| 180 |
-
attention_mask = attn.prepare_attention_mask(
|
| 181 |
-
attention_mask, sequence_length, batch_size
|
| 182 |
-
)
|
| 183 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 184 |
-
|
| 185 |
-
if attn.group_norm is not None:
|
| 186 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 187 |
-
|
| 188 |
-
query = attn.to_q(hidden_states)
|
| 189 |
-
|
| 190 |
-
# Split text and face embeddings
|
| 191 |
-
if encoder_hidden_states is None:
|
| 192 |
-
encoder_hidden_states = hidden_states
|
| 193 |
-
ip_hidden_states = None
|
| 194 |
-
else:
|
| 195 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 196 |
-
encoder_hidden_states, ip_hidden_states = (
|
| 197 |
-
encoder_hidden_states[:, :end_pos, :],
|
| 198 |
-
encoder_hidden_states[:, end_pos:, :]
|
| 199 |
-
)
|
| 200 |
-
if attn.norm_cross:
|
| 201 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 202 |
-
|
| 203 |
-
# Text attention
|
| 204 |
-
key = attn.to_k(encoder_hidden_states)
|
| 205 |
-
value = attn.to_v(encoder_hidden_states)
|
| 206 |
-
|
| 207 |
-
inner_dim = key.shape[-1]
|
| 208 |
-
head_dim = inner_dim // attn.heads
|
| 209 |
-
|
| 210 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 211 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 212 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 213 |
-
|
| 214 |
-
# Choose attention implementation
|
| 215 |
-
if self.use_xformers and self.training == False:
|
| 216 |
-
# XFormers during inference
|
| 217 |
-
query_xf = query.reshape(batch_size * attn.heads, -1, head_dim)
|
| 218 |
-
key_xf = key.reshape(batch_size * attn.heads, -1, head_dim)
|
| 219 |
-
value_xf = value.reshape(batch_size * attn.heads, -1, head_dim)
|
| 220 |
-
|
| 221 |
-
try:
|
| 222 |
-
hidden_states = self._memory_efficient_attention_xformers(
|
| 223 |
-
query_xf, key_xf, value_xf, attention_mask
|
| 224 |
-
)
|
| 225 |
-
hidden_states = hidden_states.reshape(batch_size, attn.heads, -1, head_dim)
|
| 226 |
-
except:
|
| 227 |
-
# Fallback to torch 2.0
|
| 228 |
-
hidden_states = F.scaled_dot_product_attention(
|
| 229 |
-
query, key, value,
|
| 230 |
-
attn_mask=attention_mask,
|
| 231 |
-
dropout_p=0.0,
|
| 232 |
-
is_causal=False
|
| 233 |
-
)
|
| 234 |
-
else:
|
| 235 |
-
# Torch 2.0 attention
|
| 236 |
-
hidden_states = F.scaled_dot_product_attention(
|
| 237 |
-
query, key, value,
|
| 238 |
-
attn_mask=attention_mask,
|
| 239 |
-
dropout_p=0.0,
|
| 240 |
-
is_causal=False
|
| 241 |
-
)
|
| 242 |
-
|
| 243 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 244 |
-
batch_size, -1, attn.heads * head_dim
|
| 245 |
-
)
|
| 246 |
-
hidden_states = hidden_states.to(query.dtype)
|
| 247 |
-
|
| 248 |
-
# Face attention with enhancements
|
| 249 |
-
if ip_hidden_states is not None:
|
| 250 |
-
# Dedicated K/V projections
|
| 251 |
-
ip_key = self.to_k_ip(ip_hidden_states)
|
| 252 |
-
ip_value = self.to_v_ip(ip_hidden_states)
|
| 253 |
-
|
| 254 |
-
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 255 |
-
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 256 |
-
|
| 257 |
-
# Face attention
|
| 258 |
-
if self.use_xformers and self.training == False:
|
| 259 |
-
# XFormers
|
| 260 |
-
query_xf = query.reshape(batch_size * attn.heads, -1, head_dim)
|
| 261 |
-
ip_key_xf = ip_key.reshape(batch_size * attn.heads, -1, head_dim)
|
| 262 |
-
ip_value_xf = ip_value.reshape(batch_size * attn.heads, -1, head_dim)
|
| 263 |
-
|
| 264 |
-
try:
|
| 265 |
-
ip_hidden_states = self._memory_efficient_attention_xformers(
|
| 266 |
-
query_xf, ip_key_xf, ip_value_xf, None
|
| 267 |
-
)
|
| 268 |
-
ip_hidden_states = ip_hidden_states.reshape(batch_size, attn.heads, -1, head_dim)
|
| 269 |
-
except:
|
| 270 |
-
# Fallback
|
| 271 |
-
ip_hidden_states = F.scaled_dot_product_attention(
|
| 272 |
-
query, ip_key, ip_value,
|
| 273 |
-
attn_mask=None,
|
| 274 |
-
dropout_p=0.0,
|
| 275 |
-
is_causal=False
|
| 276 |
-
)
|
| 277 |
-
else:
|
| 278 |
-
# Torch 2.0
|
| 279 |
-
ip_hidden_states = F.scaled_dot_product_attention(
|
| 280 |
-
query, ip_key, ip_value,
|
| 281 |
-
attn_mask=None,
|
| 282 |
-
dropout_p=0.0,
|
| 283 |
-
is_causal=False
|
| 284 |
-
)
|
| 285 |
-
|
| 286 |
-
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(
|
| 287 |
-
batch_size, -1, attn.heads * head_dim
|
| 288 |
-
)
|
| 289 |
-
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
| 290 |
-
|
| 291 |
-
# Compute effective scale
|
| 292 |
-
if self.adaptive_scale and self.training == False:
|
| 293 |
-
try:
|
| 294 |
-
adaptive_scale = self.compute_adaptive_scale(query, ip_key, self.scale_param.item())
|
| 295 |
-
effective_scale = adaptive_scale
|
| 296 |
-
except:
|
| 297 |
-
effective_scale = self.scale_param
|
| 298 |
-
else:
|
| 299 |
-
effective_scale = self.scale_param
|
| 300 |
-
|
| 301 |
-
# Region control support
|
| 302 |
-
if len(region_control.prompt_image_conditioning) == 1:
|
| 303 |
-
region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
|
| 304 |
-
if region_mask is not None:
|
| 305 |
-
query_flat = query.reshape([-1, query.shape[-2], query.shape[-1]])
|
| 306 |
-
h, w = region_mask.shape[:2]
|
| 307 |
-
ratio = (h * w / query_flat.shape[1]) ** 0.5
|
| 308 |
-
mask = F.interpolate(
|
| 309 |
-
region_mask[None, None],
|
| 310 |
-
scale_factor=1/ratio,
|
| 311 |
-
mode='nearest'
|
| 312 |
-
).reshape([1, -1, 1])
|
| 313 |
-
else:
|
| 314 |
-
mask = torch.ones_like(ip_hidden_states)
|
| 315 |
-
ip_hidden_states = ip_hidden_states * mask
|
| 316 |
-
|
| 317 |
-
# Blend with adaptive scale
|
| 318 |
-
hidden_states = hidden_states + effective_scale * ip_hidden_states
|
| 319 |
-
|
| 320 |
-
# Output projection
|
| 321 |
-
hidden_states = attn.to_out[0](hidden_states)
|
| 322 |
-
hidden_states = attn.to_out[1](hidden_states)
|
| 323 |
-
|
| 324 |
-
if input_ndim == 4:
|
| 325 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 326 |
-
batch_size, channel, height, width
|
| 327 |
-
)
|
| 328 |
-
|
| 329 |
-
if attn.residual_connection:
|
| 330 |
-
hidden_states = hidden_states + residual
|
| 331 |
-
|
| 332 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
| 333 |
-
|
| 334 |
-
return hidden_states
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
def setup_xformers_ip_adapter_attention(
|
| 338 |
-
pipe,
|
| 339 |
-
ip_adapter_scale: float = 1.0,
|
| 340 |
-
num_tokens: int = 4,
|
| 341 |
-
device: str = "cuda",
|
| 342 |
-
dtype = torch.float16,
|
| 343 |
-
adaptive_scale: bool = True,
|
| 344 |
-
learnable_scale: bool = True
|
| 345 |
-
):
|
| 346 |
-
"""
|
| 347 |
-
Setup IP-Adapter with XFormers optimized attention processors.
|
| 348 |
-
|
| 349 |
-
Args:
|
| 350 |
-
pipe: Diffusers pipeline
|
| 351 |
-
ip_adapter_scale: Base face embedding strength
|
| 352 |
-
num_tokens: Number of face tokens
|
| 353 |
-
device: Device
|
| 354 |
-
dtype: Data type
|
| 355 |
-
adaptive_scale: Enable adaptive scaling
|
| 356 |
-
learnable_scale: Make scales learnable
|
| 357 |
-
|
| 358 |
-
Returns:
|
| 359 |
-
Dict of attention processors
|
| 360 |
-
"""
|
| 361 |
-
attn_procs = {}
|
| 362 |
-
|
| 363 |
-
for name in pipe.unet.attn_processors.keys():
|
| 364 |
-
cross_attention_dim = None if name.endswith("attn1.processor") else pipe.unet.config.cross_attention_dim
|
| 365 |
-
|
| 366 |
-
if name.startswith("mid_block"):
|
| 367 |
-
hidden_size = pipe.unet.config.block_out_channels[-1]
|
| 368 |
-
elif name.startswith("up_blocks"):
|
| 369 |
-
block_id = int(name[len("up_blocks.")])
|
| 370 |
-
hidden_size = list(reversed(pipe.unet.config.block_out_channels))[block_id]
|
| 371 |
-
elif name.startswith("down_blocks"):
|
| 372 |
-
block_id = int(name[len("down_blocks.")])
|
| 373 |
-
hidden_size = pipe.unet.config.block_out_channels[block_id]
|
| 374 |
-
else:
|
| 375 |
-
hidden_size = pipe.unet.config.block_out_channels[-1]
|
| 376 |
-
|
| 377 |
-
if cross_attention_dim is None:
|
| 378 |
-
attn_procs[name] = AttnProcessor2_0()
|
| 379 |
-
else:
|
| 380 |
-
attn_procs[name] = IPAttnProcessorXFormers(
|
| 381 |
-
hidden_size=hidden_size,
|
| 382 |
-
cross_attention_dim=cross_attention_dim,
|
| 383 |
-
scale=ip_adapter_scale,
|
| 384 |
-
num_tokens=num_tokens,
|
| 385 |
-
adaptive_scale=adaptive_scale,
|
| 386 |
-
learnable_scale=learnable_scale
|
| 387 |
-
).to(device, dtype=dtype)
|
| 388 |
-
|
| 389 |
-
print(f"[OK] XFormers-optimized attention processors created")
|
| 390 |
-
print(f" - Total processors: {len(attn_procs)}")
|
| 391 |
-
print(f" - XFormers available: {xformers_available}")
|
| 392 |
-
print(f" - Adaptive scaling: {adaptive_scale}")
|
| 393 |
-
print(f" - Learnable scales: {learnable_scale}")
|
| 394 |
-
|
| 395 |
-
return attn_procs
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
if __name__ == "__main__":
|
| 399 |
-
print("Testing XFormers IP-Adapter Processor...")
|
| 400 |
-
|
| 401 |
-
processor = IPAttnProcessorXFormers(
|
| 402 |
-
hidden_size=1280,
|
| 403 |
-
cross_attention_dim=2048,
|
| 404 |
-
scale=0.8,
|
| 405 |
-
num_tokens=4,
|
| 406 |
-
adaptive_scale=True,
|
| 407 |
-
learnable_scale=True
|
| 408 |
-
)
|
| 409 |
-
|
| 410 |
-
print(f"\n[OK] Processor created successfully")
|
| 411 |
-
print(f"Parameters: {sum(p.numel() for p in processor.parameters()):,}")
|
| 412 |
-
print(f"XFormers available: {xformers_available}")
|
| 413 |
-
print(f"Has adaptive scaling: {processor.adaptive_scale}")
|
| 414 |
-
print(f"Has learnable scale: {isinstance(processor.scale_param, nn.Parameter)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|