import os import gc import gradio as gr import numpy as np import spaces import torch import random from PIL import Image from typing import Iterable from gradio.themes import Soft from gradio.themes.utils import colors, fonts, sizes colors.orange_red = colors.Color( name="orange_red", c50="#FFF0E5", c100="#FFE0CC", c200="#FFC299", c300="#FFA366", c400="#FF8533", c500="#FF4500", c600="#E63E00", c700="#CC3700", c800="#B33000", c900="#992900", c950="#802200", ) class OrangeRedTheme(Soft): def __init__( self, *, primary_hue: colors.Color | str = colors.gray, secondary_hue: colors.Color | str = colors.orange_red, neutral_hue: colors.Color | str = colors.slate, text_size: sizes.Size | str = sizes.text_lg, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Outfit"), "Arial", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, text_size=text_size, font=font, font_mono=font_mono, ) super().set( background_fill_primary="*primary_50", background_fill_primary_dark="*primary_900", body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", button_primary_text_color="white", button_primary_text_color_hover="white", button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", button_secondary_text_color="black", button_secondary_text_color_hover="white", button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)", button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)", button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)", button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)", slider_color="*secondary_500", slider_color_dark="*secondary_600", block_title_text_weight="600", block_border_width="3px", block_shadow="*shadow_drop_lg", button_primary_shadow="*shadow_drop_lg", button_large_padding="11px", color_accent_soft="*primary_100", block_label_background_fill="*primary_200", ) orange_red_theme = OrangeRedTheme() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) print("torch.__version__ =", torch.__version__) print("Using device:", device) from diffusers import FlowMatchEulerDiscreteScheduler from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 dtype = torch.bfloat16 pipe = QwenImageEditPlusPipeline.from_pretrained( "Qwen/Qwen-Image-Edit-2511", transformer=QwenImageTransformer2DModel.from_pretrained( "linoyts/Qwen-Image-Edit-Rapid-AIO", subfolder='transformer', torch_dtype=dtype, device_map='cuda' ), torch_dtype=dtype ).to(device) try: pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) print("Flash Attention 3 Processor set successfully.") except Exception as e: print(f"Warning: Could not set FA3 processor: {e}") MAX_SEED = np.iinfo(np.int32).max ADAPTER_SPECS = { "Multiple-Angles": { "repo": "dx8152/Qwen-Edit-2509-Multiple-angles", "weights": "镜头转换.safetensors", "adapter_name": "multiple-angles" }, "Photo-to-Anime": { "repo": "autoweeb/Qwen-Image-Edit-2509-Photo-to-Anime", "weights": "Qwen-Image-Edit-2509-Photo-to-Anime_000001000.safetensors", "adapter_name": "photo-to-anime" }, "Any-Pose": { "repo": "lilylilith/AnyPose", "weights": "2511-AnyPose-helper-00006000.safetensors", "adapter_name": "any-pose" }, "Light-Migration": { "repo": "dx8152/Qwen-Edit-2509-Light-Migration", "weights": "参考色调.safetensors", "adapter_name": "light-migration" }, "Upscaler": { "repo": "starsfriday/Qwen-Image-Edit-2511-Upscale2K", "weights": "qwen_image_edit_2511_upscale.safetensors", "adapter_name": "upscale-2k" }, } LOADED_ADAPTERS = set() def update_dimensions_on_upload(image): if image is None: return 1024, 1024 original_width, original_height = image.size if original_width > original_height: new_width = 1024 aspect_ratio = original_height / original_width new_height = int(new_width * aspect_ratio) else: new_height = 1024 aspect_ratio = original_width / original_height new_width = int(new_height * aspect_ratio) new_width = (new_width // 8) * 8 new_height = (new_height // 8) * 8 return new_width, new_height @spaces.GPU def infer( images, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True) ): gc.collect() torch.cuda.empty_cache() if not images: raise gr.Error("Please upload at least one image to edit.") pil_images = [] if images is not None: for item in images: try: if isinstance(item, tuple) or isinstance(item, list): path_or_img = item[0] else: path_or_img = item if isinstance(path_or_img, str): pil_images.append(Image.open(path_or_img).convert("RGB")) elif isinstance(path_or_img, Image.Image): pil_images.append(path_or_img.convert("RGB")) else: pil_images.append(Image.open(path_or_img.name).convert("RGB")) except Exception as e: print(f"Skipping invalid image item: {e}") continue if not pil_images: raise gr.Error("Could not process uploaded images.") spec = ADAPTER_SPECS.get(lora_adapter) if not spec: raise gr.Error(f"Configuration not found for: {lora_adapter}") adapter_name = spec["adapter_name"] if adapter_name not in LOADED_ADAPTERS: print(f"--- Downloading and Loading Adapter: {lora_adapter} ---") try: pipe.load_lora_weights( spec["repo"], weight_name=spec["weights"], adapter_name=adapter_name ) LOADED_ADAPTERS.add(adapter_name) except Exception as e: raise gr.Error(f"Failed to load adapter {lora_adapter}: {e}") else: print(f"--- Adapter {lora_adapter} is already loaded. ---") pipe.set_adapters([adapter_name], adapter_weights=[1.0]) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry" width, height = update_dimensions_on_upload(pil_images[0]) try: result_image = pipe( image=pil_images, prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, generator=generator, true_cfg_scale=guidance_scale, ).images[0] return result_image, seed except Exception as e: raise e finally: gc.collect() torch.cuda.empty_cache() @spaces.GPU def infer_example(images, prompt, lora_adapter): if not images: return None, 0 if isinstance(images, str): images_list = [images] else: images_list = images result, seed = infer( images=images_list, prompt=prompt, lora_adapter=lora_adapter, seed=0, randomize_seed=True, guidance_scale=1.0, steps=4 ) return result, seed css=""" #col-container { margin: 0 auto; max-width: 1000px; } #main-title h1 {font-size: 2.3em !important;} """ with gr.Blocks() as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# **Qwen-Image-Edit-2511-LoRAs-Fast**", elem_id="main-title") gr.Markdown("Perform diverse image edits using specialized [LoRA](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image-Edit-2511) adapters. Upload one or more images.") with gr.Row(equal_height=True): with gr.Column(): images = gr.Gallery( label="Upload Images", type="filepath", columns=2, rows=1, height=300, allow_preview=True ) prompt = gr.Text( label="Edit Prompt", show_label=True, placeholder="e.g., transform into anime..", ) run_button = gr.Button("Edit Image", variant="primary") with gr.Column(): output_image = gr.Image(label="Output Image", interactive=False, format="png", height=363) with gr.Row(): lora_adapter = gr.Dropdown( label="Choose Editing Style", choices=list(ADAPTER_SPECS.keys()), value="Photo-to-Anime" ) with gr.Accordion("Advanced Settings", open=False, visible=False): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4) gr.Examples( examples=[ [["examples/B.jpg"], "Transform into anime.", "Photo-to-Anime"], [["examples/A.jpeg"], "Rotate the camera 45 degrees to the right.", "Multiple-Angles"], [["examples/U.jpg"], "Upscale this picture to 4K resolution.", "Upscaler"], [["examples/L1.jpg", "examples/L2.jpg"], "Refer to the color tone, remove the original lighting from Image 1, and relight Image 1 based on the lighting and color tone of Image 2.", "Light-Migration"], [["examples/P1.jpg", "examples/P2.jpg"], "Make the person in image 1 do the exact same pose of the person in image 2. Changing the style and background of the image of the person in image 1 is undesirable, so don't do it.", "Any-Pose"], ], inputs=[images, prompt, lora_adapter], outputs=[output_image, seed], fn=infer_example, cache_examples=False, label="Examples" ) gr.Markdown("[*](https://huggingface.co/spaces/prithivMLmods/Qwen-Image-Edit-2511-LoRAs-Fast)This is still an experimental Space for Qwen-Image-Edit-2511.") run_button.click( fn=infer, inputs=[images, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps], outputs=[output_image, seed] ) if __name__ == "__main__": demo.queue(max_size=30).launch(css=css, theme=orange_red_theme, mcp_server=True, ssr_mode=False, show_error=True)