Spaces:
Runtime error
Runtime error
db for cache
Browse files- .gitignore +3 -1
- app.py +105 -33
- db.py +54 -0
- requirements.txt +6 -5
- schema.sql +14 -0
.gitignore
CHANGED
|
@@ -1,2 +1,4 @@
|
|
| 1 |
venv
|
| 2 |
-
gradio_cached_examples
|
|
|
|
|
|
|
|
|
| 1 |
venv
|
| 2 |
+
gradio_cached_examples
|
| 3 |
+
__pycache__/
|
| 4 |
+
cache/
|
app.py
CHANGED
|
@@ -1,6 +1,3 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import random
|
| 3 |
-
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
import PIL.Image
|
| 6 |
import torch
|
|
@@ -10,23 +7,95 @@ from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
|
| 10 |
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
|
| 11 |
from fastapi import FastAPI
|
| 12 |
import uvicorn
|
| 13 |
-
from pydantic import BaseModel
|
| 14 |
from fastapi.middleware.cors import CORSMiddleware
|
| 15 |
-
from fastapi.responses import RedirectResponse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
-
|
| 19 |
-
prompt: str
|
| 20 |
-
negative_prompt: str = ""
|
| 21 |
-
seed: int = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
app = FastAPI()
|
| 25 |
origins = [
|
| 26 |
-
"http://
|
| 27 |
-
"https://localhost.tiangolo.com",
|
| 28 |
-
"http://localhost",
|
| 29 |
-
"http://localhost:8080",
|
| 30 |
]
|
| 31 |
|
| 32 |
app.add_middleware(
|
|
@@ -38,34 +107,37 @@ app.add_middleware(
|
|
| 38 |
)
|
| 39 |
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
@app.get("/")
|
| 42 |
async def main():
|
| 43 |
# redirect to https://huggingface.co/spaces/multimodalart/stable-cascade
|
| 44 |
-
return RedirectResponse(
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
if __name__ == "__main__":
|
| 48 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 49 |
|
| 50 |
-
# MAX_SEED = np.iinfo(np.int32).max
|
| 51 |
-
# USE_TORCH_COMPILE = False
|
| 52 |
-
|
| 53 |
-
# dtype = torch.bfloat16
|
| 54 |
-
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 55 |
-
# if torch.cuda.is_available():
|
| 56 |
-
# prior_pipeline = StableCascadePriorPipeline.from_pretrained(
|
| 57 |
-
# "stabilityai/stable-cascade-prior", torch_dtype=dtype) # .to(device)
|
| 58 |
-
# decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained(
|
| 59 |
-
# "stabilityai/stable-cascade", torch_dtype=dtype) # .to(device)
|
| 60 |
-
# prior_pipeline.to(device)
|
| 61 |
-
# decoder_pipeline.to(device)
|
| 62 |
-
|
| 63 |
-
# if USE_TORCH_COMPILE:
|
| 64 |
-
# prior_pipeline.prior = torch.compile(
|
| 65 |
-
# prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
|
| 66 |
-
# decoder_pipeline.decoder = torch.compile(
|
| 67 |
-
# decoder_pipeline.decoder, mode="max-autotune", fullgraph=True)
|
| 68 |
-
|
| 69 |
|
| 70 |
# else:
|
| 71 |
# prior_pipeline = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import PIL.Image
|
| 3 |
import torch
|
|
|
|
| 7 |
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
|
| 8 |
from fastapi import FastAPI
|
| 9 |
import uvicorn
|
|
|
|
| 10 |
from fastapi.middleware.cors import CORSMiddleware
|
| 11 |
+
from fastapi.responses import RedirectResponse, StreamingResponse
|
| 12 |
+
import io
|
| 13 |
+
import os
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
from db import Database
|
| 16 |
+
import uuid
|
| 17 |
+
import logging
|
| 18 |
+
logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO"))
|
| 19 |
+
|
| 20 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
+
USE_TORCH_COMPILE = os.environ.get("USE_TORCH_COMPILE", "0") == "1"
|
| 22 |
+
SPACE_ID = os.environ.get('SPACE_ID', '')
|
| 23 |
+
|
| 24 |
+
DB_PATH = Path("/data/cache") if SPACE_ID else Path("./cache")
|
| 25 |
+
IMGS_PATH = DB_PATH / "imgs"
|
| 26 |
+
DB_PATH.mkdir(exist_ok=True, parents=True)
|
| 27 |
+
IMGS_PATH.mkdir(exist_ok=True, parents=True)
|
| 28 |
+
|
| 29 |
+
database = Database(DB_PATH)
|
| 30 |
+
|
| 31 |
+
with database() as db:
|
| 32 |
+
cursor = db.cursor()
|
| 33 |
+
cursor.execute("SELECT * FROM cache")
|
| 34 |
+
print(list(cursor.fetchall()))
|
| 35 |
+
|
| 36 |
+
dtype = torch.bfloat16
|
| 37 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 38 |
+
if torch.cuda.is_available():
|
| 39 |
+
prior_pipeline = StableCascadePriorPipeline.from_pretrained(
|
| 40 |
+
"stabilityai/stable-cascade-prior", torch_dtype=dtype
|
| 41 |
+
) # .to(device)
|
| 42 |
+
decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained(
|
| 43 |
+
"stabilityai/stable-cascade", torch_dtype=dtype
|
| 44 |
+
) # .to(device)
|
| 45 |
+
prior_pipeline.to(device)
|
| 46 |
+
decoder_pipeline.to(device)
|
| 47 |
+
|
| 48 |
+
if USE_TORCH_COMPILE:
|
| 49 |
+
prior_pipeline.prior = torch.compile(
|
| 50 |
+
prior_pipeline.prior, mode="reduce-overhead", fullgraph=True
|
| 51 |
+
)
|
| 52 |
+
decoder_pipeline.decoder = torch.compile(
|
| 53 |
+
decoder_pipeline.decoder, mode="max-autotune", fullgraph=True
|
| 54 |
+
)
|
| 55 |
|
| 56 |
|
| 57 |
+
def generate(
|
| 58 |
+
prompt: str,
|
| 59 |
+
negative_prompt: str = "",
|
| 60 |
+
seed: int = 0,
|
| 61 |
+
width: int = 1024,
|
| 62 |
+
height: int = 1024,
|
| 63 |
+
prior_num_inference_steps: int = 20,
|
| 64 |
+
prior_guidance_scale: float = 4.0,
|
| 65 |
+
decoder_num_inference_steps: int = 10,
|
| 66 |
+
decoder_guidance_scale: float = 0.0,
|
| 67 |
+
num_images_per_prompt: int = 2,
|
| 68 |
+
) -> PIL.Image.Image:
|
| 69 |
+
|
| 70 |
+
generator = torch.Generator().manual_seed(seed)
|
| 71 |
+
prior_output = prior_pipeline(
|
| 72 |
+
prompt=prompt,
|
| 73 |
+
height=height,
|
| 74 |
+
width=width,
|
| 75 |
+
num_inference_steps=prior_num_inference_steps,
|
| 76 |
+
timesteps=DEFAULT_STAGE_C_TIMESTEPS,
|
| 77 |
+
negative_prompt=negative_prompt,
|
| 78 |
+
guidance_scale=prior_guidance_scale,
|
| 79 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 80 |
+
generator=generator,
|
| 81 |
+
)
|
| 82 |
+
decoder_output = decoder_pipeline(
|
| 83 |
+
image_embeddings=prior_output.image_embeddings,
|
| 84 |
+
prompt=prompt,
|
| 85 |
+
num_inference_steps=decoder_num_inference_steps,
|
| 86 |
+
# timesteps=decoder_timesteps,
|
| 87 |
+
guidance_scale=decoder_guidance_scale,
|
| 88 |
+
negative_prompt=negative_prompt,
|
| 89 |
+
generator=generator,
|
| 90 |
+
output_type="pil",
|
| 91 |
+
).images
|
| 92 |
+
|
| 93 |
+
return decoder_output[0]
|
| 94 |
|
| 95 |
|
| 96 |
app = FastAPI()
|
| 97 |
origins = [
|
| 98 |
+
"http://huggingface.co",
|
|
|
|
|
|
|
|
|
|
| 99 |
]
|
| 100 |
|
| 101 |
app.add_middleware(
|
|
|
|
| 107 |
)
|
| 108 |
|
| 109 |
|
| 110 |
+
@app.get("/image")
|
| 111 |
+
async def generate_image(prompt: str, negative_prompt: str, seed: int = 2134213213):
|
| 112 |
+
cached_img = database.check(prompt, negative_prompt, seed)
|
| 113 |
+
if cached_img:
|
| 114 |
+
logging.info(f"Image found in cache: {cached_img[0]}")
|
| 115 |
+
return StreamingResponse(open(cached_img[0], "rb"), media_type="image/jpeg")
|
| 116 |
+
|
| 117 |
+
logging.info(f"Image not found in cache, generating new image")
|
| 118 |
+
pil_image = generate(prompt, negative_prompt, seed)
|
| 119 |
+
img_id = str(uuid.uuid4())
|
| 120 |
+
img_path = IMGS_PATH / f"{img_id}.jpg"
|
| 121 |
+
pil_image.save(img_path)
|
| 122 |
+
img_io = io.BytesIO()
|
| 123 |
+
pil_image.save(img_io, "JPEG")
|
| 124 |
+
img_io.seek(0)
|
| 125 |
+
database.insert(prompt, negative_prompt, str(img_path), seed)
|
| 126 |
+
|
| 127 |
+
return StreamingResponse(img_io, media_type="image/jpeg")
|
| 128 |
+
|
| 129 |
+
|
| 130 |
@app.get("/")
|
| 131 |
async def main():
|
| 132 |
# redirect to https://huggingface.co/spaces/multimodalart/stable-cascade
|
| 133 |
+
return RedirectResponse(
|
| 134 |
+
"https://multimodalart-stable-cascade.hf.space/?__theme=system"
|
| 135 |
+
)
|
| 136 |
|
| 137 |
|
| 138 |
if __name__ == "__main__":
|
| 139 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
# else:
|
| 143 |
# prior_pipeline = None
|
db.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sqlite3
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class Database:
|
| 6 |
+
def __init__(self, db_path=None):
|
| 7 |
+
if db_path is None:
|
| 8 |
+
raise ValueError("db_path must be provided")
|
| 9 |
+
self.db_path = db_path
|
| 10 |
+
self.db_file = self.db_path / "cache.db"
|
| 11 |
+
if not self.db_file.exists():
|
| 12 |
+
print("Creating database")
|
| 13 |
+
print("DB_FILE", self.db_file)
|
| 14 |
+
db = sqlite3.connect(self.db_file)
|
| 15 |
+
with open(Path("schema.sql"), "r") as f:
|
| 16 |
+
db.executescript(f.read())
|
| 17 |
+
db.commit()
|
| 18 |
+
db.close()
|
| 19 |
+
|
| 20 |
+
def get_db(self):
|
| 21 |
+
db = sqlite3.connect(self.db_file, check_same_thread=False)
|
| 22 |
+
db.row_factory = sqlite3.Row
|
| 23 |
+
return db
|
| 24 |
+
|
| 25 |
+
def __enter__(self):
|
| 26 |
+
self.db = self.get_db()
|
| 27 |
+
return self.db
|
| 28 |
+
|
| 29 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
| 30 |
+
self.db.close()
|
| 31 |
+
|
| 32 |
+
def __call__(self):
|
| 33 |
+
return self
|
| 34 |
+
|
| 35 |
+
def insert(self, prompt: str, negative_prompt: str, image_path: str, seed: int):
|
| 36 |
+
with self() as db:
|
| 37 |
+
cursor = db.cursor()
|
| 38 |
+
cursor.execute(
|
| 39 |
+
"INSERT INTO cache (prompt, negative_prompt, image_path, seed) VALUES (?, ?, ?, ?)",
|
| 40 |
+
(prompt, negative_prompt, image_path, seed),
|
| 41 |
+
)
|
| 42 |
+
db.commit()
|
| 43 |
+
|
| 44 |
+
def check(self, prompt: str, negative_prompt: str, seed: int):
|
| 45 |
+
with self() as db:
|
| 46 |
+
cursor = db.cursor()
|
| 47 |
+
cursor.execute(
|
| 48 |
+
"SELECT image_path FROM cache WHERE prompt = ? AND negative_prompt = ? AND seed = ? ORDER BY RANDOM() LIMIT 1",
|
| 49 |
+
(prompt, negative_prompt, seed),
|
| 50 |
+
)
|
| 51 |
+
image_path = cursor.fetchone()
|
| 52 |
+
if image_path:
|
| 53 |
+
return image_path
|
| 54 |
+
return False
|
requirements.txt
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
git+https://github.com/kashif/diffusers.git@wuerstchen-v3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
accelerate
|
| 3 |
safetensors
|
| 4 |
-
transformers
|
| 5 |
-
gradio
|
| 6 |
-
fastapi
|
| 7 |
-
pydantic
|
| 8 |
-
uvicorn
|
|
|
|
| 1 |
git+https://github.com/kashif/diffusers.git@wuerstchen-v3
|
| 2 |
+
fastapi==0.109.2
|
| 3 |
+
numpy==1.26.4
|
| 4 |
+
Pillow==10.2.0
|
| 5 |
+
torch==2.2.0
|
| 6 |
+
uvicorn==0.27.1
|
| 7 |
accelerate
|
| 8 |
safetensors
|
| 9 |
+
transformers
|
|
|
|
|
|
|
|
|
|
|
|
schema.sql
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
PRAGMA foreign_keys = OFF;
|
| 2 |
+
|
| 3 |
+
BEGIN TRANSACTION;
|
| 4 |
+
|
| 5 |
+
CREATE TABLE cache (
|
| 6 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 7 |
+
prompt TEXT NOT NULL,
|
| 8 |
+
negative_prompt TEXT NOT NULL,
|
| 9 |
+
image_path TEXT NOT NULL,
|
| 10 |
+
seed INTEGER NOT NULL,
|
| 11 |
+
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL
|
| 12 |
+
);
|
| 13 |
+
|
| 14 |
+
COMMIT;
|