Spaces:
Running
Running
Update app_quant.py
Browse files- app_quant.py +167 -161
app_quant.py
CHANGED
|
@@ -1,186 +1,192 @@
|
|
| 1 |
-
#
|
| 2 |
-
# Nava Ultra-Fast CPU Inference (4-bit Quant + Caching)
|
| 3 |
-
# ---------------------------------------------------------
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
| 6 |
import soundfile as sf
|
| 7 |
from pathlib import Path
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
from transformers import
|
| 10 |
-
|
| 11 |
-
AutoModelForCausalLM,
|
| 12 |
-
BitsAndBytesConfig
|
| 13 |
-
)
|
| 14 |
-
from peft import PeftModel
|
| 15 |
from snac import SNAC
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
# CONFIG
|
| 19 |
-
# ---------------------------------------------------------
|
| 20 |
MODEL_NAME = "rahul7star/nava1.0"
|
| 21 |
LORA_NAME = "rahul7star/nava-audio"
|
| 22 |
SNAC_MODEL_NAME = "rahul7star/nava-snac"
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
TARGET_SR = 24000
|
| 27 |
-
DEFAULT_BATCH_SIZE = 500
|
| 28 |
-
MICRO_BATCH = 2
|
| 29 |
-
SEQ_LEN = 2048
|
| 30 |
OUT_ROOT = Path("/tmp/data")
|
| 31 |
OUT_ROOT.mkdir(exist_ok=True, parents=True)
|
| 32 |
|
| 33 |
-
DEFAULT_TEXT =
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
#
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
#
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
print("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
snac_model = SNAC.from_pretrained(SNAC_MODEL_NAME).eval().to(DEVICE)
|
|
|
|
| 86 |
|
| 87 |
-
|
| 88 |
-
#
|
| 89 |
-
#
|
| 90 |
-
|
| 91 |
-
def generate_audio_cpu_lora(text):
|
| 92 |
-
|
| 93 |
logs = []
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
audio
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
#
|
| 170 |
-
#
|
| 171 |
-
#
|
| 172 |
with gr.Blocks() as demo:
|
| 173 |
-
gr.Markdown("##
|
| 174 |
-
|
| 175 |
-
txt = gr.Textbox(label="Enter text", value=DEFAULT_TEXT)
|
| 176 |
btn = gr.Button("Generate Audio")
|
| 177 |
-
|
| 178 |
audio = gr.Audio(label="Audio", type="filepath")
|
| 179 |
file = gr.File(label="Download")
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
btn.click(generate_audio_cpu_lora, [txt], [audio, file, logs])
|
| 183 |
-
|
| 184 |
|
| 185 |
if __name__ == "__main__":
|
| 186 |
demo.launch()
|
|
|
|
| 1 |
+
# app_quant_fixed.py
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
import soundfile as sf
|
| 5 |
from pathlib import Path
|
| 6 |
+
import traceback
|
| 7 |
+
import time
|
| 8 |
|
| 9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
+
from peft import PeftModel, LoraConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
from snac import SNAC
|
| 12 |
|
| 13 |
+
# -------------------------
|
|
|
|
|
|
|
| 14 |
MODEL_NAME = "rahul7star/nava1.0"
|
| 15 |
LORA_NAME = "rahul7star/nava-audio"
|
| 16 |
SNAC_MODEL_NAME = "rahul7star/nava-snac"
|
| 17 |
|
|
|
|
|
|
|
| 18 |
TARGET_SR = 24000
|
|
|
|
|
|
|
|
|
|
| 19 |
OUT_ROOT = Path("/tmp/data")
|
| 20 |
OUT_ROOT.mkdir(exist_ok=True, parents=True)
|
| 21 |
|
| 22 |
+
DEFAULT_TEXT = "राजनीतिज्ञों ने कहा कि उन्होंने निर्णायक मत को अनावश्यक रूप से निर्धारित करने के लिए अफ़गान संविधान में काफी अस्पष्टता पाई थी"
|
| 23 |
+
|
| 24 |
+
# conservative defaults
|
| 25 |
+
SEQ_LEN_GPU = 240000 # if you really have GPU
|
| 26 |
+
SEQ_LEN_CPU = 4096 # keep CPU small to avoid OOM
|
| 27 |
+
MAX_NEW_TOKENS_CPU = 1024
|
| 28 |
+
MAX_NEW_TOKENS_GPU = 240000
|
| 29 |
+
|
| 30 |
+
# detect device
|
| 31 |
+
HAS_CUDA = torch.cuda.is_available()
|
| 32 |
+
DEVICE = "cuda" if HAS_CUDA else "cpu"
|
| 33 |
+
|
| 34 |
+
# optional: try import bitsandbytes only if CUDA available
|
| 35 |
+
try:
|
| 36 |
+
if HAS_CUDA:
|
| 37 |
+
from transformers import BitsAndBytesConfig
|
| 38 |
+
bnb_available = True
|
| 39 |
+
else:
|
| 40 |
+
bnb_available = False
|
| 41 |
+
except Exception:
|
| 42 |
+
bnb_available = False
|
| 43 |
+
|
| 44 |
+
print(f"[init] CUDA available: {HAS_CUDA}, bitsandbytes available: {bnb_available}")
|
| 45 |
+
|
| 46 |
+
# -------------------------
|
| 47 |
+
# Load tokenizer (always)
|
| 48 |
+
# -------------------------
|
| 49 |
+
print("[init] Loading tokenizer...")
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 51 |
+
|
| 52 |
+
# -------------------------
|
| 53 |
+
# Load base model & LoRA (GPU vs CPU safe)
|
| 54 |
+
# -------------------------
|
| 55 |
+
print("[init] Loading base model + LoRA (this may take a while)...")
|
| 56 |
+
if HAS_CUDA and bnb_available:
|
| 57 |
+
# GPU + bnb path: use 4-bit quant
|
| 58 |
+
quant_config = BitsAndBytesConfig(
|
| 59 |
+
load_in_4bit=True,
|
| 60 |
+
bnb_4bit_quant_type="nf4",
|
| 61 |
+
bnb_4bit_use_double_quant=True,
|
| 62 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 63 |
+
)
|
| 64 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 65 |
+
MODEL_NAME,
|
| 66 |
+
quantization_config=quant_config,
|
| 67 |
+
device_map="auto",
|
| 68 |
+
trust_remote_code=True,
|
| 69 |
+
)
|
| 70 |
+
model = PeftModel.from_pretrained(base_model, LORA_NAME, device_map="auto")
|
| 71 |
+
SEQ_LEN = SEQ_LEN_GPU
|
| 72 |
+
MAX_NEW_TOKENS = MAX_NEW_TOKENS_GPU
|
| 73 |
+
print("[init] Loaded model in 4-bit (GPU).")
|
| 74 |
+
else:
|
| 75 |
+
# CPU fallback: load in FP32 with low_cpu_mem_usage
|
| 76 |
+
# Avoid load_in_4bit on CPU
|
| 77 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 78 |
+
MODEL_NAME,
|
| 79 |
+
torch_dtype=torch.float32,
|
| 80 |
+
device_map={"": "cpu"},
|
| 81 |
+
low_cpu_mem_usage=True,
|
| 82 |
+
trust_remote_code=True,
|
| 83 |
+
)
|
| 84 |
+
# attach PEFT adapter - this will add LoRA wrappers but keep base weights on CPU
|
| 85 |
+
model = PeftModel.from_pretrained(base_model, LORA_NAME, device_map={"": "cpu"})
|
| 86 |
+
SEQ_LEN = SEQ_LEN_CPU
|
| 87 |
+
MAX_NEW_TOKENS = MAX_NEW_TOKENS_CPU
|
| 88 |
+
print("[init] Loaded model on CPU (FP32) with LoRA.")
|
| 89 |
+
|
| 90 |
+
model.eval()
|
| 91 |
+
|
| 92 |
+
# -------------------------
|
| 93 |
+
# Load SNAC (once)
|
| 94 |
+
# -------------------------
|
| 95 |
+
print("[init] Loading SNAC...")
|
| 96 |
snac_model = SNAC.from_pretrained(SNAC_MODEL_NAME).eval().to(DEVICE)
|
| 97 |
+
print("[init] SNAC loaded.")
|
| 98 |
|
| 99 |
+
# -------------------------
|
| 100 |
+
# Inference function
|
| 101 |
+
# -------------------------
|
| 102 |
+
def generate_audio_cpu_lora(text: str):
|
|
|
|
|
|
|
| 103 |
logs = []
|
| 104 |
+
t0 = time.time()
|
| 105 |
+
try:
|
| 106 |
+
logs.append(f"[INFO] Device: {DEVICE} | SEQ_LEN: {SEQ_LEN} | MAX_NEW_TOKENS: {MAX_NEW_TOKENS}")
|
| 107 |
+
|
| 108 |
+
# Build prompt (same as your earlier code)
|
| 109 |
+
soh = tokenizer.decode([128259]); eoh = tokenizer.decode([128260])
|
| 110 |
+
soa = tokenizer.decode([128261]); sos = tokenizer.decode([128257])
|
| 111 |
+
eot = tokenizer.decode([128009])
|
| 112 |
+
bos = tokenizer.bos_token
|
| 113 |
+
prompt = soh + bos + text + eot + eoh + soa + sos
|
| 114 |
+
|
| 115 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(DEVICE)
|
| 116 |
+
|
| 117 |
+
# Keep generated tokens small on CPU
|
| 118 |
+
max_new = min(MAX_NEW_TOKENS, 1024) if DEVICE == "cpu" else MAX_NEW_TOKENS
|
| 119 |
+
|
| 120 |
+
with torch.inference_mode():
|
| 121 |
+
outputs = model.generate(
|
| 122 |
+
**inputs,
|
| 123 |
+
max_new_tokens=max_new,
|
| 124 |
+
temperature=0.4,
|
| 125 |
+
top_p=0.9,
|
| 126 |
+
repetition_penalty=1.1,
|
| 127 |
+
do_sample=True,
|
| 128 |
+
eos_token_id=128258,
|
| 129 |
+
pad_token_id=tokenizer.pad_token_id
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# extract generated part
|
| 133 |
+
gen_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
|
| 134 |
+
logs.append(f"[INFO] Generated {len(gen_ids)} tokens")
|
| 135 |
+
|
| 136 |
+
# filter SNAC tokens (same logic)
|
| 137 |
+
snac_min, snac_max = 128266, 156937
|
| 138 |
+
eos_id = 128258
|
| 139 |
+
eos_idx = gen_ids.index(eos_id) if eos_id in gen_ids else len(gen_ids)
|
| 140 |
+
snac_tokens = [t for t in gen_ids[:eos_idx] if snac_min <= t <= snac_max]
|
| 141 |
+
|
| 142 |
+
frames = len(snac_tokens) // 7
|
| 143 |
+
snac_tokens = snac_tokens[:frames*7]
|
| 144 |
+
|
| 145 |
+
l1, l2, l3 = [], [], []
|
| 146 |
+
for i in range(frames):
|
| 147 |
+
s = snac_tokens[i*7:(i+1)*7]
|
| 148 |
+
l1.append((s[0]-snac_min) % 4096)
|
| 149 |
+
l2.extend([(s[1]-snac_min)%4096, (s[4]-snac_min)%4096])
|
| 150 |
+
l3.extend([(s[2]-snac_min)%4096, (s[3]-snac_min)%4096, (s[5]-snac_min)%4096, (s[6]-snac_min)%4096])
|
| 151 |
+
|
| 152 |
+
if len(l1) == 0:
|
| 153 |
+
logs.append("[WARN] No SNAC frames found in generated tokens. Returning debug logs.")
|
| 154 |
+
return None, None, "\n".join(logs)
|
| 155 |
+
|
| 156 |
+
codes_tensor = [torch.tensor(l1, dtype=torch.long, device=DEVICE).unsqueeze(0),
|
| 157 |
+
torch.tensor(l2, dtype=torch.long, device=DEVICE).unsqueeze(0),
|
| 158 |
+
torch.tensor(l3, dtype=torch.long, device=DEVICE).unsqueeze(0)]
|
| 159 |
+
|
| 160 |
+
with torch.inference_mode():
|
| 161 |
+
z_q = snac_model.quantizer.from_codes(codes_tensor)
|
| 162 |
+
audio = snac_model.decoder(z_q)[0,0].cpu().numpy()
|
| 163 |
+
|
| 164 |
+
if len(audio) > 2048:
|
| 165 |
+
audio = audio[2048:]
|
| 166 |
+
|
| 167 |
+
out_path = OUT_ROOT / f"tts_output_cpu_lora.wav"
|
| 168 |
+
sf.write(out_path, audio, TARGET_SR)
|
| 169 |
+
logs.append(f"[OK] Audio saved: {out_path} (duration {len(audio)/TARGET_SR:.2f}s)")
|
| 170 |
+
|
| 171 |
+
logs.append(f"[TIME] Elapsed {time.time()-t0:.2f}s")
|
| 172 |
+
return str(out_path), str(out_path), "\n".join(logs)
|
| 173 |
+
|
| 174 |
+
except Exception as e:
|
| 175 |
+
tb = traceback.format_exc()
|
| 176 |
+
logs.append(f"[ERROR] {e}\n{tb}")
|
| 177 |
+
return None, None, "\n".join(logs)
|
| 178 |
+
|
| 179 |
+
# -------------------------
|
| 180 |
+
# Gradio UI
|
| 181 |
+
# -------------------------
|
| 182 |
with gr.Blocks() as demo:
|
| 183 |
+
gr.Markdown("## Maya TTS — CPU/GPU safe")
|
| 184 |
+
txt = gr.Textbox(label="Enter text", value=DEFAULT_TEXT, lines=2)
|
|
|
|
| 185 |
btn = gr.Button("Generate Audio")
|
|
|
|
| 186 |
audio = gr.Audio(label="Audio", type="filepath")
|
| 187 |
file = gr.File(label="Download")
|
| 188 |
+
logs_box = gr.Textbox(label="Logs", lines=10)
|
| 189 |
+
btn.click(generate_audio_cpu_lora, [txt], [audio, file, logs_box])
|
|
|
|
|
|
|
| 190 |
|
| 191 |
if __name__ == "__main__":
|
| 192 |
demo.launch()
|