Spaces:
Running
Running
app imp v 2
Browse files- app_quant.py +157 -326
app_quant.py
CHANGED
|
@@ -1,376 +1,207 @@
|
|
| 1 |
-
#
|
| 2 |
-
"""
|
| 3 |
-
Optimized Maya + LoRA + SNAC inference app
|
| 4 |
-
Loads model + LoRA + SNAC at startup, vectorized SNAC unpacking,
|
| 5 |
-
torch.compile for speed, and Gradio UI with presets & emotions.
|
| 6 |
-
"""
|
| 7 |
-
|
| 8 |
-
import os
|
| 9 |
-
import time
|
| 10 |
-
import traceback
|
| 11 |
-
from pathlib import Path
|
| 12 |
-
|
| 13 |
import gradio as gr
|
| 14 |
-
import numpy as np
|
| 15 |
-
import soundfile as sf
|
| 16 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 19 |
-
from peft import PeftModel
|
| 20 |
from snac import SNAC
|
| 21 |
|
| 22 |
-
|
| 23 |
-
#
|
| 24 |
-
#
|
|
|
|
| 25 |
MODEL_NAME = "rahul7star/nava1.0"
|
| 26 |
LORA_NAME = "rahul7star/nava-audio"
|
| 27 |
-
SNAC_MODEL_NAME = "
|
| 28 |
TARGET_SR = 24000
|
|
|
|
| 29 |
OUT_ROOT = Path("/tmp/data")
|
| 30 |
OUT_ROOT.mkdir(exist_ok=True, parents=True)
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
"निर्धारित करने के लिए अफ़गान संविधान में काफी अस्पष्टता पाई थी")
|
| 35 |
-
|
| 36 |
-
# Preset characters
|
| 37 |
-
PRESET_CHARACTERS = {
|
| 38 |
-
"Male American": {
|
| 39 |
-
"description": "Realistic male voice in the 20s age with an american accent. High pitch, raspy timbre, brisk pacing, neutral tone delivery at medium intensity, viral_content domain, short_form_narrator role, neutral delivery",
|
| 40 |
-
"example_text": DEFAULT_TEXT
|
| 41 |
-
},
|
| 42 |
-
"Female British": {
|
| 43 |
-
"description": "Realistic female voice in the 30s age with a british accent. Normal pitch, throaty timbre, conversational pacing, sarcastic tone delivery at low intensity, podcast domain, interviewer role, formal delivery",
|
| 44 |
-
"example_text": DEFAULT_TEXT
|
| 45 |
-
},
|
| 46 |
-
"Robot": {
|
| 47 |
-
"description": "Creative, ai_machine_voice character. Male voice in their 30s with an american accent. High pitch, robotic timbre, slow pacing, sad tone at medium intensity.",
|
| 48 |
-
"example_text": DEFAULT_TEXT
|
| 49 |
-
},
|
| 50 |
-
"Singer": {
|
| 51 |
-
"description": "Creative, animated_cartoon character. Male voice in their 30s with an american accent. High pitch, deep timbre, slow pacing, sarcastic tone at medium intensity.",
|
| 52 |
-
"example_text": DEFAULT_TEXT
|
| 53 |
-
},
|
| 54 |
-
"Custom (use LoRA)": {
|
| 55 |
-
"description": "Use your trained LoRA voice. Edit description or use preset emotions.",
|
| 56 |
-
"example_text": DEFAULT_TEXT
|
| 57 |
-
},
|
| 58 |
-
}
|
| 59 |
-
|
| 60 |
-
EMOTION_TAGS = [
|
| 61 |
-
"<neutral>", "<angry>", "<chuckle>", "<cry>", "<disappointed>", "<excited>",
|
| 62 |
-
"<gasp>", "<giggle>", "<laugh>", "<laugh_harder>", "<sarcastic>", "<sigh>",
|
| 63 |
-
"<sing>", "<whisper>"
|
| 64 |
-
]
|
| 65 |
-
|
| 66 |
-
# Generation sequence length config
|
| 67 |
-
SEQ_LEN_CPU = 4096
|
| 68 |
-
SEQ_LEN_GPU = 240000
|
| 69 |
-
MAX_NEW_TOKENS_CPU = 1024
|
| 70 |
-
MAX_NEW_TOKENS_GPU = 240000
|
| 71 |
-
|
| 72 |
-
# -------------------------
|
| 73 |
-
# Detect device & bitsandbytes
|
| 74 |
-
# -------------------------
|
| 75 |
HAS_CUDA = torch.cuda.is_available()
|
| 76 |
DEVICE = "cuda" if HAS_CUDA else "cpu"
|
| 77 |
|
| 78 |
-
|
| 79 |
-
if HAS_CUDA:
|
| 80 |
-
try:
|
| 81 |
-
from transformers import BitsAndBytesConfig
|
| 82 |
-
bnb_available = True
|
| 83 |
-
except Exception:
|
| 84 |
-
bnb_available = False
|
| 85 |
|
| 86 |
-
print(f"[init] Device: {DEVICE} | CUDA: {HAS_CUDA} | bnb: {bnb_available}")
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
| 92 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 93 |
-
# safe tokenizer tweaks
|
| 94 |
-
tokenizer.model_max_length = SEQ_LEN_GPU if HAS_CUDA else SEQ_LEN_CPU
|
| 95 |
-
tokenizer.padding_side = "left"
|
| 96 |
-
|
| 97 |
-
# Cache the special tokens strings once
|
| 98 |
-
SOH_TOK = tokenizer.decode([128259])
|
| 99 |
-
EOH_TOK = tokenizer.decode([128260])
|
| 100 |
-
SOA_TOK = tokenizer.decode([128261])
|
| 101 |
-
SOS_TOK = tokenizer.decode([128257])
|
| 102 |
-
EOT_TOK = tokenizer.decode([128009])
|
| 103 |
-
BOS_TOK = tokenizer.bos_token
|
| 104 |
-
|
| 105 |
-
# -------------------------
|
| 106 |
-
# Load base model + LoRA once (optimized)
|
| 107 |
-
# -------------------------
|
| 108 |
-
print("[init] Loading base model and attaching LoRA... this may take some time")
|
| 109 |
-
model = None
|
| 110 |
-
try:
|
| 111 |
-
if HAS_CUDA and bnb_available:
|
| 112 |
-
# GPU + bnb (4-bit) path
|
| 113 |
-
quant_config = BitsAndBytesConfig(
|
| 114 |
-
load_in_4bit=True,
|
| 115 |
-
bnb_4bit_quant_type="nf4",
|
| 116 |
-
bnb_4bit_use_double_quant=True,
|
| 117 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
| 118 |
-
)
|
| 119 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 120 |
-
MODEL_NAME,
|
| 121 |
-
quantization_config=quant_config,
|
| 122 |
-
device_map="auto",
|
| 123 |
-
trust_remote_code=True,
|
| 124 |
-
)
|
| 125 |
-
# attach LoRA
|
| 126 |
-
model = PeftModel.from_pretrained(base_model, LORA_NAME, device_map="auto")
|
| 127 |
-
SEQ_LEN = SEQ_LEN_GPU
|
| 128 |
-
MAX_NEW_TOKENS = MAX_NEW_TOKENS_GPU
|
| 129 |
-
print("[init] Base+LoRA loaded on GPU (4-bit).")
|
| 130 |
-
else:
|
| 131 |
-
# CPU (or GPU without bnb): load base model with low_cpu_mem_usage then attach PEFT
|
| 132 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 133 |
-
MODEL_NAME,
|
| 134 |
-
torch_dtype=torch.float32,
|
| 135 |
-
device_map={"": "cpu"},
|
| 136 |
-
low_cpu_mem_usage=True,
|
| 137 |
-
trust_remote_code=True,
|
| 138 |
-
)
|
| 139 |
-
model = PeftModel.from_pretrained(base_model, LORA_NAME, device_map={"": "cpu"})
|
| 140 |
-
SEQ_LEN = SEQ_LEN_CPU
|
| 141 |
-
MAX_NEW_TOKENS = MAX_NEW_TOKENS_CPU
|
| 142 |
-
print("[init] Base+LoRA loaded on CPU (FP32).")
|
| 143 |
-
except Exception as e:
|
| 144 |
-
print("[init] Error loading model:", e)
|
| 145 |
-
traceback.print_exc()
|
| 146 |
-
raise
|
| 147 |
-
|
| 148 |
-
# Speed/quality configs
|
| 149 |
-
try:
|
| 150 |
-
# prefer use_cache and disable extra outputs
|
| 151 |
-
model.config.use_cache = True
|
| 152 |
-
model.config.output_attentions = False
|
| 153 |
-
model.config.output_hidden_states = False
|
| 154 |
-
# torch.compile if available (PyTorch >= 2.0)
|
| 155 |
-
try:
|
| 156 |
-
print("[init] Trying torch.compile for model (may speed up inference)...")
|
| 157 |
-
# choose a safe compile mode
|
| 158 |
-
if DEVICE == "cuda":
|
| 159 |
-
model = torch.compile(model)
|
| 160 |
-
else:
|
| 161 |
-
# CPU safe mode: reduce overhead
|
| 162 |
-
model = torch.compile(model, mode="reduce-overhead", fullgraph=False)
|
| 163 |
-
print("[init] torch.compile applied (if supported).")
|
| 164 |
-
except Exception as e:
|
| 165 |
-
print("[init] torch.compile not applied:", e)
|
| 166 |
-
except Exception:
|
| 167 |
-
pass
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
model.eval()
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
|
| 180 |
-
#
|
| 181 |
-
#
|
| 182 |
-
|
|
|
|
| 183 |
snac_model = SNAC.from_pretrained(SNAC_MODEL_NAME).eval().to(DEVICE)
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
arr = torch.tensor(snac_tokens[:total], dtype=torch.long, device=DEVICE)
|
| 206 |
-
frames_tensor = arr.view(frames, 7)
|
| 207 |
-
|
| 208 |
-
snac_min = 128266
|
| 209 |
-
# l1: (frames,)
|
| 210 |
-
l1 = ((frames_tensor[:, 0] - snac_min) % 4096).unsqueeze(0)
|
| 211 |
-
# l2: interleave frames[:,1] and frames[:,4]
|
| 212 |
-
l2_col1 = ((frames_tensor[:, 1] - snac_min) % 4096)
|
| 213 |
-
l2_col2 = ((frames_tensor[:, 4] - snac_min) % 4096)
|
| 214 |
-
l2 = torch.stack([l2_col1, l2_col2], dim=1).reshape(1, -1)
|
| 215 |
-
# l3: frames[:,2], frames[:,3], frames[:,5], frames[:,6]
|
| 216 |
-
l3_cols = torch.stack([
|
| 217 |
-
(frames_tensor[:, 2] - snac_min) % 4096,
|
| 218 |
-
(frames_tensor[:, 3] - snac_min) % 4096,
|
| 219 |
-
(frames_tensor[:, 5] - snac_min) % 4096,
|
| 220 |
-
(frames_tensor[:, 6] - snac_min) % 4096,
|
| 221 |
-
], dim=1)
|
| 222 |
-
l3 = l3_cols.reshape(1, -1)
|
| 223 |
-
|
| 224 |
-
return l1, l2, l3
|
| 225 |
-
|
| 226 |
-
# -------------------------
|
| 227 |
-
# Inference function (single unified, uses loaded model + snac_model)
|
| 228 |
-
# -------------------------
|
| 229 |
-
def generate_audio_with_lora(text: str,
|
| 230 |
-
description: str = "",
|
| 231 |
-
emotion_tag: str = "<neutral>",
|
| 232 |
-
max_new_tokens_override: int = None):
|
| 233 |
-
"""
|
| 234 |
-
Build prompt using description+emotion (if provided), run model.generate,
|
| 235 |
-
extract SNAC tokens, decode via snac_model -> return filepath + logs
|
| 236 |
-
"""
|
| 237 |
logs = []
|
| 238 |
t0 = time.time()
|
| 239 |
try:
|
| 240 |
-
|
| 241 |
-
if description:
|
| 242 |
-
prompt_text = f'<description="{description}"> {text}'
|
| 243 |
-
else:
|
| 244 |
-
prompt_text = text
|
| 245 |
-
|
| 246 |
-
# prepend special tokens (cached)
|
| 247 |
-
prompt = SOH_TOK + BOS_TOK + prompt_text + EOT_TOK + EOH_TOK + SOA_TOK + SOS_TOK
|
| 248 |
-
|
| 249 |
-
logs.append(f"[INFO] DEVICE={DEVICE} | prompt_len={len(prompt)}")
|
| 250 |
|
| 251 |
-
|
| 252 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(DEVICE)
|
| 253 |
|
| 254 |
-
|
| 255 |
-
max_new = MAX_NEW_TOKENS
|
| 256 |
-
if max_new_tokens_override:
|
| 257 |
-
max_new = min(max_new, int(max_new_tokens_override))
|
| 258 |
-
if DEVICE == "cpu":
|
| 259 |
-
max_new = min(max_new, MAX_NEW_TOKENS_CPU)
|
| 260 |
|
| 261 |
-
# Generate
|
| 262 |
with torch.inference_mode():
|
| 263 |
-
|
| 264 |
**inputs,
|
| 265 |
-
max_new_tokens=
|
| 266 |
-
|
|
|
|
| 267 |
top_p=0.9,
|
| 268 |
repetition_penalty=1.1,
|
| 269 |
-
|
| 270 |
-
eos_token_id=128258,
|
| 271 |
pad_token_id=tokenizer.pad_token_id,
|
|
|
|
| 272 |
)
|
| 273 |
|
| 274 |
-
|
| 275 |
-
logs.append(f"[INFO] Generated {len(gen_ids)} tokens")
|
| 276 |
|
| 277 |
-
|
| 278 |
-
snac_min, snac_max = 128266, 156937
|
| 279 |
-
eos_id = 128258
|
| 280 |
-
eos_idx = gen_ids.index(eos_id) if eos_id in gen_ids else len(gen_ids)
|
| 281 |
-
snac_tokens = [t for t in gen_ids[:eos_idx] if snac_min <= t <= snac_max]
|
| 282 |
|
| 283 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
frames = len(snac_tokens) // 7
|
| 285 |
-
|
| 286 |
-
logs.append("[WARN] No SNAC frames found in generated tokens.")
|
| 287 |
-
return None, None, "\n".join(logs)
|
| 288 |
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
logs.append("[ERROR] SNAC conversion failed.")
|
| 292 |
return None, None, "\n".join(logs)
|
| 293 |
|
| 294 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
with torch.inference_mode():
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
|
|
|
| 300 |
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
audio = audio[2048:]
|
| 304 |
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
logs.append(f"[OK] Audio saved: {out_path} (duration {len(audio)/TARGET_SR:.2f}s)")
|
| 308 |
|
| 309 |
-
|
| 310 |
-
return str(out_path), str(out_path), "\n".join(logs)
|
| 311 |
|
| 312 |
except Exception as e:
|
| 313 |
-
|
| 314 |
-
logs.append(
|
| 315 |
return None, None, "\n".join(logs)
|
| 316 |
|
| 317 |
-
|
| 318 |
-
#
|
| 319 |
-
#
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
# -------------------------
|
| 339 |
-
with gr.Blocks(title="NAVA — Maya1 + LoRA + SNAC (Optimized)", css=".gradio-container {max-width: 1400px}") as demo:
|
| 340 |
-
gr.Markdown("# 🪶 NAVA — Maya1 + LoRA + SNAC (Optimized)\nGenerate emotional Hindi speech using Maya1 base + your LoRA adapter.")
|
| 341 |
-
with gr.Row():
|
| 342 |
-
with gr.Column(scale=3):
|
| 343 |
-
gr.Markdown("## Inference (CPU/GPU auto)\nType text + pick a preset or write description manually.")
|
| 344 |
-
text_in = gr.Textbox(label="Enter Hindi text", value=DEFAULT_TEXT, lines=3)
|
| 345 |
-
preset_select = gr.Dropdown(label="Select Preset Character", choices=list(PRESET_CHARACTERS.keys()), value="Male American")
|
| 346 |
-
description_box = gr.Textbox(label="Voice Description (editable)", value=PRESET_CHARACTERS["Male American"]["description"], lines=2)
|
| 347 |
-
emotion_select = gr.Dropdown(label="Select Emotion", choices=EMOTION_TAGS, value="<neutral>")
|
| 348 |
-
gen_btn = gr.Button("🔊 Generate Audio (LoRA)")
|
| 349 |
-
gen_logs = gr.Textbox(label="Logs", lines=10)
|
| 350 |
-
with gr.Column(scale=2):
|
| 351 |
-
gr.Markdown("### Output")
|
| 352 |
-
audio_player = gr.Audio(label="Generated Audio", type="filepath")
|
| 353 |
-
download_file = gr.File(label="Download generated file")
|
| 354 |
-
gr.Markdown("### Example")
|
| 355 |
-
gr.Textbox(label="Example Text", value=DEFAULT_TEXT, lines=2, interactive=False)
|
| 356 |
-
# example audio in repo: audio.wav (user can add)
|
| 357 |
-
example_audio_path = "audio.wav"
|
| 358 |
-
gr.Audio(label="Example Audio (project)", value=example_audio_path, type="filepath", interactive=False)
|
| 359 |
-
|
| 360 |
-
# wire updates: preset -> description
|
| 361 |
-
def _update_desc(preset_name):
|
| 362 |
-
return PRESET_CHARACTERS.get(preset_name, {}).get("description", "")
|
| 363 |
-
preset_select.change(fn=_update_desc, inputs=[preset_select], outputs=[description_box])
|
| 364 |
-
|
| 365 |
-
# generation
|
| 366 |
-
def _generate(text, preset, description, emotion):
|
| 367 |
-
return generate_for_ui(text, preset, description, emotion)
|
| 368 |
-
|
| 369 |
-
gen_btn.click(fn=_generate,
|
| 370 |
-
inputs=[text_in, preset_select, description_box, emotion_select],
|
| 371 |
-
outputs=[audio_player, download_file, gen_logs])
|
| 372 |
-
|
| 373 |
-
gr.Markdown("### Notes\n- Model & LoRA are loaded once at startup.\n- If you want faster generation on GPU, enable a GPU with `bitsandbytes` installed for 4-bit mode.\n- You can edit description to steer voice (sex/age/timbre).")
|
| 374 |
-
|
| 375 |
-
if __name__ == "__main__":
|
| 376 |
-
demo.launch()
|
|
|
|
| 1 |
+
# app_quant_superfast.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
+
import soundfile as sf
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import traceback
|
| 7 |
+
import time
|
| 8 |
|
| 9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
+
from peft import PeftModel
|
| 11 |
from snac import SNAC
|
| 12 |
|
| 13 |
+
|
| 14 |
+
# =========================================================
|
| 15 |
+
# CONFIG
|
| 16 |
+
# =========================================================
|
| 17 |
MODEL_NAME = "rahul7star/nava1.0"
|
| 18 |
LORA_NAME = "rahul7star/nava-audio"
|
| 19 |
+
SNAC_MODEL_NAME = "rahul7star/nava-snac"
|
| 20 |
TARGET_SR = 24000
|
| 21 |
+
|
| 22 |
OUT_ROOT = Path("/tmp/data")
|
| 23 |
OUT_ROOT.mkdir(exist_ok=True, parents=True)
|
| 24 |
|
| 25 |
+
DEFAULT_TEXT = "राजनीतिज्ञों ने कहा कि उन्होंने निर्णायक मत को अनावश्यक रूप से निर्धारित करने के लिए अफ़गान संविधान में काफी अस्पष्टता पाई थी"
|
| 26 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
HAS_CUDA = torch.cuda.is_available()
|
| 28 |
DEVICE = "cuda" if HAS_CUDA else "cpu"
|
| 29 |
|
| 30 |
+
MAX_NEW = 240000 if HAS_CUDA else 1024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
|
|
|
| 32 |
|
| 33 |
+
print(f"[INIT] Running on: {DEVICE}")
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# =========================================================
|
| 37 |
+
# LOAD TOKENIZER (light)
|
| 38 |
+
# =========================================================
|
| 39 |
+
print("[INIT] Loading tokenizer...")
|
| 40 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
|
| 43 |
+
# =========================================================
|
| 44 |
+
# LOAD BASE MODEL + LORA (ONCE)
|
| 45 |
+
# =========================================================
|
| 46 |
+
print("[INIT] Loading base model...")
|
| 47 |
+
if HAS_CUDA:
|
| 48 |
+
# GPU 4-bit
|
| 49 |
+
from transformers import BitsAndBytesConfig
|
| 50 |
+
quant = BitsAndBytesConfig(
|
| 51 |
+
load_in_4bit=True,
|
| 52 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 53 |
+
bnb_4bit_use_double_quant=True,
|
| 54 |
+
bnb_4bit_quant_type="nf4",
|
| 55 |
+
)
|
| 56 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 57 |
+
MODEL_NAME,
|
| 58 |
+
quantization_config=quant,
|
| 59 |
+
device_map="auto",
|
| 60 |
+
trust_remote_code=True,
|
| 61 |
+
)
|
| 62 |
+
else:
|
| 63 |
+
# CPU 8-bit (MUCH faster than fp32)
|
| 64 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 65 |
+
MODEL_NAME,
|
| 66 |
+
device_map={"": "cpu"},
|
| 67 |
+
trust_remote_code=True,
|
| 68 |
+
load_in_8bit=True,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
print("[INIT] Attaching LoRA...")
|
| 72 |
+
model = PeftModel.from_pretrained(base_model, LORA_NAME, device_map={"": DEVICE})
|
| 73 |
+
|
| 74 |
+
# 🔥 Merge LoRA weights permanently = big speedup
|
| 75 |
+
print("[INIT] Merging LoRA -> base weights...")
|
| 76 |
+
model = model.merge_and_unload()
|
| 77 |
|
| 78 |
model.eval()
|
| 79 |
+
torch.set_grad_enabled(False)
|
| 80 |
+
|
| 81 |
+
print("[INIT] Model ready.")
|
| 82 |
|
| 83 |
+
|
| 84 |
+
# =========================================================
|
| 85 |
+
# LOAD SNAC DECODER
|
| 86 |
+
# =========================================================
|
| 87 |
+
print("[INIT] Loading SNAC...")
|
| 88 |
snac_model = SNAC.from_pretrained(SNAC_MODEL_NAME).eval().to(DEVICE)
|
| 89 |
+
|
| 90 |
+
print("[INIT COMPLETE]")
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# =========================================================
|
| 94 |
+
# PRE-COMPUTED TOKENS (SPEED-UP)
|
| 95 |
+
# =========================================================
|
| 96 |
+
soh = tokenizer.decode([128259])
|
| 97 |
+
eoh = tokenizer.decode([128260])
|
| 98 |
+
soa = tokenizer.decode([128261])
|
| 99 |
+
sos = tokenizer.decode([128257])
|
| 100 |
+
eot = tokenizer.decode([128009])
|
| 101 |
+
bos = tokenizer.bos_token
|
| 102 |
+
snac_min, snac_max = 128266, 156937
|
| 103 |
+
eos_id = 128258
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
# =========================================================
|
| 107 |
+
# FAST INFERENCE
|
| 108 |
+
# =========================================================
|
| 109 |
+
def generate_audio(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
logs = []
|
| 111 |
t0 = time.time()
|
| 112 |
try:
|
| 113 |
+
logs.append(f"[INFO] Using {DEVICE}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
prompt = f"{soh}{bos}{text}{eot}{eoh}{soa}{sos}"
|
|
|
|
| 116 |
|
| 117 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
|
|
|
| 119 |
with torch.inference_mode():
|
| 120 |
+
output = model.generate(
|
| 121 |
**inputs,
|
| 122 |
+
max_new_tokens=MAX_NEW,
|
| 123 |
+
do_sample=True,
|
| 124 |
+
temperature=0.5,
|
| 125 |
top_p=0.9,
|
| 126 |
repetition_penalty=1.1,
|
| 127 |
+
eos_token_id=eos_id,
|
|
|
|
| 128 |
pad_token_id=tokenizer.pad_token_id,
|
| 129 |
+
use_cache=True, # 🔥 faster
|
| 130 |
)
|
| 131 |
|
| 132 |
+
gen = output[0, inputs['input_ids'].shape[1]:].tolist()
|
|
|
|
| 133 |
|
| 134 |
+
logs.append(f"[INFO] Generated token count: {len(gen)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
# strip non-SNAC
|
| 137 |
+
if eos_id in gen:
|
| 138 |
+
gen = gen[:gen.index(eos_id)]
|
| 139 |
+
|
| 140 |
+
snac_tokens = [t for t in gen if snac_min <= t <= snac_max]
|
| 141 |
frames = len(snac_tokens) // 7
|
| 142 |
+
snac_tokens = snac_tokens[:frames * 7]
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
if frames == 0:
|
| 145 |
+
logs.append("[WARN] No SNAC frames!")
|
|
|
|
| 146 |
return None, None, "\n".join(logs)
|
| 147 |
|
| 148 |
+
# unpack
|
| 149 |
+
l1 = []
|
| 150 |
+
l2 = []
|
| 151 |
+
l3 = []
|
| 152 |
+
|
| 153 |
+
for i in range(frames):
|
| 154 |
+
s = snac_tokens[i*7:(i+1)*7]
|
| 155 |
+
l1.append((s[0]-snac_min) % 4096)
|
| 156 |
+
l2 += [(s[1]-snac_min)%4096, (s[4]-snac_min)%4096]
|
| 157 |
+
l3 += [(s[2]-snac_min)%4096, (s[3]-snac_min)%4096,
|
| 158 |
+
(s[5]-snac_min)%4096, (s[6]-snac_min)%4096]
|
| 159 |
+
|
| 160 |
+
codes = [
|
| 161 |
+
torch.tensor(l1, device=DEVICE).unsqueeze(0),
|
| 162 |
+
torch.tensor(l2, device=DEVICE).unsqueeze(0),
|
| 163 |
+
torch.tensor(l3, device=DEVICE).unsqueeze(0),
|
| 164 |
+
]
|
| 165 |
+
|
| 166 |
+
# decode → audio
|
| 167 |
with torch.inference_mode():
|
| 168 |
+
zq = snac_model.quantizer.from_codes(codes)
|
| 169 |
+
audio = snac_model.decoder(zq)[0, 0].cpu().numpy()
|
| 170 |
+
|
| 171 |
+
# trim
|
| 172 |
+
audio = audio[2048:]
|
| 173 |
|
| 174 |
+
out = OUT_ROOT / "tts.wav"
|
| 175 |
+
sf.write(out, audio, TARGET_SR)
|
|
|
|
| 176 |
|
| 177 |
+
logs.append(f"[OK] Audio saved {out}")
|
| 178 |
+
logs.append(f"[TIME] {time.time() - t0:.2f}s")
|
|
|
|
| 179 |
|
| 180 |
+
return str(out), str(out), "\n".join(logs)
|
|
|
|
| 181 |
|
| 182 |
except Exception as e:
|
| 183 |
+
logs.append(str(e))
|
| 184 |
+
logs.append(traceback.format_exc())
|
| 185 |
return None, None, "\n".join(logs)
|
| 186 |
|
| 187 |
+
|
| 188 |
+
# =========================================================
|
| 189 |
+
# GRADIO UI
|
| 190 |
+
# =========================================================
|
| 191 |
+
with gr.Blocks() as demo:
|
| 192 |
+
gr.Markdown("## ⚡ Super-Fast Maya TTS (LoRA Merged + Optimized)")
|
| 193 |
+
|
| 194 |
+
txt = gr.Textbox(label="Enter text", value=DEFAULT_TEXT, lines=2)
|
| 195 |
+
btn = gr.Button("Generate Audio ⚡")
|
| 196 |
+
audio = gr.Audio(label="Audio Output", type="filepath")
|
| 197 |
+
file = gr.File(label="Download")
|
| 198 |
+
logs = gr.Textbox(label="Logs", lines=8)
|
| 199 |
+
|
| 200 |
+
btn.click(generate_audio, [txt], [audio, file, logs])
|
| 201 |
+
|
| 202 |
+
# Example section
|
| 203 |
+
gr.Markdown("### Example")
|
| 204 |
+
gr.Textbox(value=DEFAULT_TEXT, label="Example Text", interactive=False)
|
| 205 |
+
gr.Audio(value="audio.wav", type="filepath", label="Example Audio", interactive=False)
|
| 206 |
+
|
| 207 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|