Spaces:
Running
Running
Update app_quant.py
Browse files- app_quant.py +105 -84
app_quant.py
CHANGED
|
@@ -1,4 +1,10 @@
|
|
| 1 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
import soundfile as sf
|
|
@@ -12,19 +18,18 @@ from peft import PeftModel
|
|
| 12 |
from snac import SNAC
|
| 13 |
|
| 14 |
# -------------------------
|
| 15 |
-
# Config / constants
|
| 16 |
# -------------------------
|
| 17 |
-
MODEL_NAME = "rahul7star/nava1.0"
|
| 18 |
-
LORA_NAME = "rahul7star/nava-audio"
|
| 19 |
-
SNAC_MODEL_NAME = "
|
| 20 |
TARGET_SR = 24000
|
| 21 |
OUT_ROOT = Path("/tmp/data")
|
| 22 |
OUT_ROOT.mkdir(exist_ok=True, parents=True)
|
| 23 |
|
| 24 |
DEFAULT_TEXT = "राजनीतिज्ञों ने कहा कि उन्होंने निर्णायक मत को अनावश्यक रूप से निर्धारित करने के लिए अफ़गान संविधान में काफी अस्पष्टता पाई थी"
|
| 25 |
-
EXAMPLE_AUDIO_PATH = "audio.wav"
|
| 26 |
|
| 27 |
-
# Preset characters (2 realistic + 2 creative + Custom)
|
| 28 |
PRESET_CHARACTERS = {
|
| 29 |
"Male American": {
|
| 30 |
"description": "Realistic male voice in the 20s age with an american accent. High pitch, raspy timbre, brisk pacing, neutral tone delivery at medium intensity, viral_content domain, short_form_narrator role, neutral delivery",
|
|
@@ -43,29 +48,28 @@ PRESET_CHARACTERS = {
|
|
| 43 |
"example_text": "Of course you'd think that trying to reason with the fifty-foot-tall rage monster is a viable course of action. <chuckle> Why would we ever consider running away very fast."
|
| 44 |
},
|
| 45 |
"Custom": {
|
| 46 |
-
"description": "",
|
| 47 |
"example_text": DEFAULT_TEXT
|
| 48 |
}
|
| 49 |
}
|
| 50 |
|
| 51 |
-
# Emotion tags (full list you asked to support)
|
| 52 |
EMOTION_TAGS = [
|
| 53 |
"<neutral>", "<angry>", "<chuckle>", "<cry>", "<disappointed>",
|
| 54 |
"<excited>", "<gasp>", "<giggle>", "<laugh>", "<laugh_harder>",
|
| 55 |
"<sarcastic>", "<sigh>", "<sing>", "<whisper>"
|
| 56 |
]
|
| 57 |
|
| 58 |
-
#
|
| 59 |
SEQ_LEN_CPU = 4096
|
| 60 |
MAX_NEW_TOKENS_CPU = 1024
|
| 61 |
SEQ_LEN_GPU = 240000
|
| 62 |
MAX_NEW_TOKENS_GPU = 240000
|
| 63 |
|
| 64 |
-
#
|
| 65 |
HAS_CUDA = torch.cuda.is_available()
|
| 66 |
DEVICE = "cuda" if HAS_CUDA else "cpu"
|
| 67 |
|
| 68 |
-
#
|
| 69 |
bnb_available = False
|
| 70 |
if HAS_CUDA:
|
| 71 |
try:
|
|
@@ -77,14 +81,30 @@ if HAS_CUDA:
|
|
| 77 |
print(f"[init] cuda={HAS_CUDA}, bnb={bnb_available}, device={DEVICE}")
|
| 78 |
|
| 79 |
# -------------------------
|
| 80 |
-
# Load tokenizer
|
| 81 |
# -------------------------
|
| 82 |
print("[init] loading tokenizer...")
|
| 83 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 84 |
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
if HAS_CUDA and bnb_available:
|
| 87 |
-
# GPU + bnb path (fastest
|
| 88 |
quant_config = BitsAndBytesConfig(
|
| 89 |
load_in_4bit=True,
|
| 90 |
bnb_4bit_quant_type="nf4",
|
|
@@ -100,7 +120,7 @@ if HAS_CUDA and bnb_available:
|
|
| 100 |
model = PeftModel.from_pretrained(base_model, LORA_NAME, device_map="auto")
|
| 101 |
SEQ_LEN = SEQ_LEN_GPU
|
| 102 |
MAX_NEW_TOKENS = MAX_NEW_TOKENS_GPU
|
| 103 |
-
print("[init] loaded base+LoRA on GPU (4-bit
|
| 104 |
else:
|
| 105 |
# CPU fallback - load base into CPU memory and attach LoRA
|
| 106 |
base_model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -115,49 +135,58 @@ else:
|
|
| 115 |
MAX_NEW_TOKENS = MAX_NEW_TOKENS_CPU
|
| 116 |
print("[init] loaded base+LoRA on CPU (FP32).")
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
model.eval()
|
| 119 |
print("[init] model ready.")
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
print("[init] snac ready.")
|
| 124 |
|
| 125 |
-
#
|
| 126 |
-
|
| 127 |
-
#
|
|
|
|
|
|
|
| 128 |
def build_maya_prompt(description: str, text: str):
|
| 129 |
-
# use the special tokens used by maya-style models
|
| 130 |
-
soh_token = tokenizer.decode([128259]) # SOH
|
| 131 |
-
eoh_token = tokenizer.decode([128260]) # EOH
|
| 132 |
-
soa_token = tokenizer.decode([128261]) # SOA
|
| 133 |
-
sos_token = tokenizer.decode([128257]) # SOS (code start)
|
| 134 |
-
eot_token = tokenizer.decode([128009]) # TEXT_EOT / EOT marker
|
| 135 |
-
bos_token = tokenizer.bos_token
|
| 136 |
-
|
| 137 |
-
# We use the simple format: "<description> <text>" and Maya wrappers
|
| 138 |
formatted = f'<description="{description}"> {text}'
|
| 139 |
-
|
| 140 |
-
return
|
| 141 |
|
| 142 |
-
#
|
| 143 |
-
#
|
| 144 |
-
#
|
| 145 |
-
def generate_from_loaded_model(
|
| 146 |
-
"""
|
| 147 |
-
final_text: text that already contains description + emotion + user text
|
| 148 |
-
returns: (audio_path_str, download_path_str, logs_str)
|
| 149 |
-
"""
|
| 150 |
logs = []
|
| 151 |
t0 = time.time()
|
| 152 |
try:
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
prompt = final_text
|
| 156 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(DEVICE)
|
| 157 |
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
# Use inference_mode
|
| 161 |
with torch.inference_mode():
|
| 162 |
outputs = model.generate(
|
| 163 |
**inputs,
|
|
@@ -168,13 +197,13 @@ def generate_from_loaded_model(final_text: str):
|
|
| 168 |
do_sample=True,
|
| 169 |
eos_token_id=128258,
|
| 170 |
pad_token_id=tokenizer.pad_token_id,
|
|
|
|
| 171 |
)
|
| 172 |
|
| 173 |
-
# Grab generated ids (after prompt length)
|
| 174 |
gen_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
|
| 175 |
logs.append(f"[info] generated tokens: {len(gen_ids)}")
|
| 176 |
|
| 177 |
-
# Extract SNAC tokens
|
| 178 |
SNAC_MIN = 128266
|
| 179 |
SNAC_MAX = 156937
|
| 180 |
EOS_ID = 128258
|
|
@@ -182,38 +211,39 @@ def generate_from_loaded_model(final_text: str):
|
|
| 182 |
snac_tokens = [t for t in gen_ids[:eos_idx] if SNAC_MIN <= t <= SNAC_MAX]
|
| 183 |
|
| 184 |
frames = len(snac_tokens) // 7
|
| 185 |
-
snac_tokens = snac_tokens[:frames*7]
|
| 186 |
|
| 187 |
-
if frames == 0
|
| 188 |
-
logs.append("[warn] no SNAC frames found
|
| 189 |
return None, None, "\n".join(logs)
|
| 190 |
|
| 191 |
-
#
|
| 192 |
l1, l2, l3 = [], [], []
|
| 193 |
for i in range(frames):
|
| 194 |
-
s = snac_tokens[i*7:(i+1)*7]
|
| 195 |
l1.append((s[0] - SNAC_MIN) % 4096)
|
| 196 |
l2.extend([(s[1] - SNAC_MIN) % 4096, (s[4] - SNAC_MIN) % 4096])
|
| 197 |
l3.extend([(s[2] - SNAC_MIN) % 4096, (s[3] - SNAC_MIN) % 4096, (s[5] - SNAC_MIN) % 4096, (s[6] - SNAC_MIN) % 4096])
|
| 198 |
|
| 199 |
-
#
|
| 200 |
codes_tensor = [
|
| 201 |
-
torch.tensor(l1, dtype=torch.long, device=
|
| 202 |
-
torch.tensor(l2, dtype=torch.long, device=
|
| 203 |
-
torch.tensor(l3, dtype=torch.long, device=
|
| 204 |
]
|
| 205 |
|
|
|
|
| 206 |
with torch.inference_mode():
|
| 207 |
z_q = snac_model.quantizer.from_codes(codes_tensor)
|
| 208 |
audio = snac_model.decoder(z_q)[0, 0].cpu().numpy()
|
| 209 |
|
| 210 |
-
#
|
| 211 |
if len(audio) > 2048:
|
| 212 |
audio = audio[2048:]
|
| 213 |
|
| 214 |
-
out_path = OUT_ROOT / "
|
| 215 |
sf.write(out_path, audio, TARGET_SR)
|
| 216 |
-
logs.append(f"[ok] saved {out_path} duration
|
| 217 |
logs.append(f"[time] elapsed {time.time() - t0:.2f}s")
|
| 218 |
|
| 219 |
return str(out_path), str(out_path), "\n".join(logs)
|
|
@@ -223,37 +253,29 @@ def generate_from_loaded_model(final_text: str):
|
|
| 223 |
logs.append(f"[error] {e}\n{tb}")
|
| 224 |
return None, None, "\n".join(logs)
|
| 225 |
|
|
|
|
| 226 |
# --------------
|
| 227 |
-
# UI glue
|
| 228 |
# --------------
|
| 229 |
def generate_for_ui(text, preset_name, description, emotion):
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
final_plain = f"{combined_desc}. {text}".strip()
|
| 241 |
-
final_prompt = build_maya_prompt(combined_desc, text) # keep maya wrapper
|
| 242 |
-
|
| 243 |
-
audio_path, download_path, gen_logs = generate_from_loaded_model(final_prompt)
|
| 244 |
-
if audio_path is None:
|
| 245 |
-
return None, None, gen_logs
|
| 246 |
-
return audio_path, download_path, gen_logs
|
| 247 |
|
| 248 |
-
except Exception as e:
|
| 249 |
-
return None, None, f"[error] {e}\n{traceback.format_exc()}"
|
| 250 |
|
| 251 |
# -------------------------
|
| 252 |
-
# Gradio UI (
|
| 253 |
# -------------------------
|
| 254 |
css = ".gradio-container {max-width: 1400px}"
|
| 255 |
-
with gr.Blocks(title="NAVA —
|
| 256 |
-
gr.Markdown("# 🪶 NAVA —
|
| 257 |
with gr.Row():
|
| 258 |
with gr.Column(scale=3):
|
| 259 |
gr.Markdown("## Inference (CPU/GPU auto)\nType text + pick a preset or write description manually.")
|
|
@@ -284,6 +306,5 @@ with gr.Blocks(title="NAVA — VEEN + LoRA + SNAC (Optimized)", css=css) as demo
|
|
| 284 |
inputs=[text_in, preset_select, description_box, emotion_select],
|
| 285 |
outputs=[audio_player, download_file, gen_logs])
|
| 286 |
|
| 287 |
-
# -------------------------
|
| 288 |
if __name__ == "__main__":
|
| 289 |
demo.launch()
|
|
|
|
| 1 |
+
# app_optimized.py
|
| 2 |
+
"""
|
| 3 |
+
Optimized inference for Maya1 + LoRA + SNAC.
|
| 4 |
+
Keeps your UI unchanged; replaces internal model loading + generate paths
|
| 5 |
+
to run much faster (preload everything, SNAC on GPU when available, reuse tokens).
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
import gradio as gr
|
| 9 |
import torch
|
| 10 |
import soundfile as sf
|
|
|
|
| 18 |
from snac import SNAC
|
| 19 |
|
| 20 |
# -------------------------
|
| 21 |
+
# Config / constants (same as you)
|
| 22 |
# -------------------------
|
| 23 |
+
MODEL_NAME = "rahul7star/nava1.0"
|
| 24 |
+
LORA_NAME = "rahul7star/nava-audio"
|
| 25 |
+
SNAC_MODEL_NAME = "hubertsiuzdak/snac_24khz" # decoder
|
| 26 |
TARGET_SR = 24000
|
| 27 |
OUT_ROOT = Path("/tmp/data")
|
| 28 |
OUT_ROOT.mkdir(exist_ok=True, parents=True)
|
| 29 |
|
| 30 |
DEFAULT_TEXT = "राजनीतिज्ञों ने कहा कि उन्होंने निर्णायक मत को अनावश्यक रूप से निर्धारित करने के लिए अफ़गान संविधान में काफी अस्पष्टता पाई थी"
|
| 31 |
+
EXAMPLE_AUDIO_PATH = "audio.wav"
|
| 32 |
|
|
|
|
| 33 |
PRESET_CHARACTERS = {
|
| 34 |
"Male American": {
|
| 35 |
"description": "Realistic male voice in the 20s age with an american accent. High pitch, raspy timbre, brisk pacing, neutral tone delivery at medium intensity, viral_content domain, short_form_narrator role, neutral delivery",
|
|
|
|
| 48 |
"example_text": "Of course you'd think that trying to reason with the fifty-foot-tall rage monster is a viable course of action. <chuckle> Why would we ever consider running away very fast."
|
| 49 |
},
|
| 50 |
"Custom": {
|
| 51 |
+
"description": "",
|
| 52 |
"example_text": DEFAULT_TEXT
|
| 53 |
}
|
| 54 |
}
|
| 55 |
|
|
|
|
| 56 |
EMOTION_TAGS = [
|
| 57 |
"<neutral>", "<angry>", "<chuckle>", "<cry>", "<disappointed>",
|
| 58 |
"<excited>", "<gasp>", "<giggle>", "<laugh>", "<laugh_harder>",
|
| 59 |
"<sarcastic>", "<sigh>", "<sing>", "<whisper>"
|
| 60 |
]
|
| 61 |
|
| 62 |
+
# length limits
|
| 63 |
SEQ_LEN_CPU = 4096
|
| 64 |
MAX_NEW_TOKENS_CPU = 1024
|
| 65 |
SEQ_LEN_GPU = 240000
|
| 66 |
MAX_NEW_TOKENS_GPU = 240000
|
| 67 |
|
| 68 |
+
# detect device
|
| 69 |
HAS_CUDA = torch.cuda.is_available()
|
| 70 |
DEVICE = "cuda" if HAS_CUDA else "cpu"
|
| 71 |
|
| 72 |
+
# try bitsandbytes for faster GPU (optional)
|
| 73 |
bnb_available = False
|
| 74 |
if HAS_CUDA:
|
| 75 |
try:
|
|
|
|
| 81 |
print(f"[init] cuda={HAS_CUDA}, bnb={bnb_available}, device={DEVICE}")
|
| 82 |
|
| 83 |
# -------------------------
|
| 84 |
+
# Load tokenizer and model + LoRA once at startup (optimized)
|
| 85 |
# -------------------------
|
| 86 |
print("[init] loading tokenizer...")
|
| 87 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 88 |
|
| 89 |
+
# Precompute commonly used special tokens (avoid repeated decode calls)
|
| 90 |
+
SOH = tokenizer.decode([128259])
|
| 91 |
+
EOH = tokenizer.decode([128260])
|
| 92 |
+
SOA = tokenizer.decode([128261])
|
| 93 |
+
SOS = tokenizer.decode([128257])
|
| 94 |
+
EOT = tokenizer.decode([128009])
|
| 95 |
+
BOS = tokenizer.bos_token
|
| 96 |
+
|
| 97 |
+
# Optionally compile model later if torch>=2 and CPU path (safe-guarded)
|
| 98 |
+
enable_torch_compile = False
|
| 99 |
+
try:
|
| 100 |
+
if not HAS_CUDA and hasattr(torch, "compile"):
|
| 101 |
+
enable_torch_compile = True
|
| 102 |
+
except Exception:
|
| 103 |
+
enable_torch_compile = False
|
| 104 |
+
|
| 105 |
+
print("[init] loading base model + LoRA (this may take time)...")
|
| 106 |
if HAS_CUDA and bnb_available:
|
| 107 |
+
# GPU + bnb path (fastest if available)
|
| 108 |
quant_config = BitsAndBytesConfig(
|
| 109 |
load_in_4bit=True,
|
| 110 |
bnb_4bit_quant_type="nf4",
|
|
|
|
| 120 |
model = PeftModel.from_pretrained(base_model, LORA_NAME, device_map="auto")
|
| 121 |
SEQ_LEN = SEQ_LEN_GPU
|
| 122 |
MAX_NEW_TOKENS = MAX_NEW_TOKENS_GPU
|
| 123 |
+
print("[init] loaded base+LoRA on GPU (4-bit).")
|
| 124 |
else:
|
| 125 |
# CPU fallback - load base into CPU memory and attach LoRA
|
| 126 |
base_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 135 |
MAX_NEW_TOKENS = MAX_NEW_TOKENS_CPU
|
| 136 |
print("[init] loaded base+LoRA on CPU (FP32).")
|
| 137 |
|
| 138 |
+
# Ensure cache usage
|
| 139 |
+
try:
|
| 140 |
+
model.config.use_cache = True
|
| 141 |
+
except Exception:
|
| 142 |
+
pass
|
| 143 |
+
|
| 144 |
+
# Optionally compile model for faster CPU (if available and tested)
|
| 145 |
+
if enable_torch_compile:
|
| 146 |
+
try:
|
| 147 |
+
print("[init] compiling model (torch.compile)...")
|
| 148 |
+
model = torch.compile(model)
|
| 149 |
+
except Exception as e:
|
| 150 |
+
print("[init] torch.compile failed, continuing without it:", e)
|
| 151 |
+
|
| 152 |
model.eval()
|
| 153 |
print("[init] model ready.")
|
| 154 |
|
| 155 |
+
# -------------------------
|
| 156 |
+
# Load SNAC decoder once (prefer GPU device for decoder)
|
| 157 |
+
# -------------------------
|
| 158 |
+
snac_device = DEVICE if HAS_CUDA else "cpu"
|
| 159 |
+
print(f"[init] loading SNAC decoder onto {snac_device} ...")
|
| 160 |
+
snac_model = SNAC.from_pretrained(SNAC_MODEL_NAME).eval().to(snac_device)
|
| 161 |
print("[init] snac ready.")
|
| 162 |
|
| 163 |
+
# Optional: if you have an upsampler like in your FastAudioSR path, plug it here (omitted for portability)
|
| 164 |
+
|
| 165 |
+
# -------------------------
|
| 166 |
+
# Helper: build Maya-style prompt (reusing tokens above)
|
| 167 |
+
# -------------------------
|
| 168 |
def build_maya_prompt(description: str, text: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
formatted = f'<description="{description}"> {text}'
|
| 170 |
+
# use precomputed tokens for speed
|
| 171 |
+
return SOH + BOS + formatted + EOT + EOH + SOA + SOS
|
| 172 |
|
| 173 |
+
# -------------------------
|
| 174 |
+
# Optimized generator: reuse tokenizer/model/snac in memory
|
| 175 |
+
# -------------------------
|
| 176 |
+
def generate_from_loaded_model(final_prompt: str, max_new_tokens_override: int = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
logs = []
|
| 178 |
t0 = time.time()
|
| 179 |
try:
|
| 180 |
+
# tokenise WITHOUT adding extra padding if not needed
|
| 181 |
+
inputs = tokenizer(final_prompt, return_tensors="pt", truncation=True).to(DEVICE)
|
|
|
|
|
|
|
| 182 |
|
| 183 |
+
# choose new-token budget
|
| 184 |
+
if max_new_tokens_override is not None:
|
| 185 |
+
max_new = max_new_tokens_override
|
| 186 |
+
else:
|
| 187 |
+
max_new = MAX_NEW_TOKENS if DEVICE == "cuda" else min(MAX_NEW_TOKENS, 1024)
|
| 188 |
|
| 189 |
+
# Use inference_mode (fast) and use_cache (set earlier)
|
| 190 |
with torch.inference_mode():
|
| 191 |
outputs = model.generate(
|
| 192 |
**inputs,
|
|
|
|
| 197 |
do_sample=True,
|
| 198 |
eos_token_id=128258,
|
| 199 |
pad_token_id=tokenizer.pad_token_id,
|
| 200 |
+
use_cache=True,
|
| 201 |
)
|
| 202 |
|
|
|
|
| 203 |
gen_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
|
| 204 |
logs.append(f"[info] generated tokens: {len(gen_ids)}")
|
| 205 |
|
| 206 |
+
# Extract SNAC tokens
|
| 207 |
SNAC_MIN = 128266
|
| 208 |
SNAC_MAX = 156937
|
| 209 |
EOS_ID = 128258
|
|
|
|
| 211 |
snac_tokens = [t for t in gen_ids[:eos_idx] if SNAC_MIN <= t <= SNAC_MAX]
|
| 212 |
|
| 213 |
frames = len(snac_tokens) // 7
|
| 214 |
+
snac_tokens = snac_tokens[:frames * 7]
|
| 215 |
|
| 216 |
+
if frames == 0:
|
| 217 |
+
logs.append("[warn] no SNAC frames found")
|
| 218 |
return None, None, "\n".join(logs)
|
| 219 |
|
| 220 |
+
# de-interleave
|
| 221 |
l1, l2, l3 = [], [], []
|
| 222 |
for i in range(frames):
|
| 223 |
+
s = snac_tokens[i * 7:(i + 1) * 7]
|
| 224 |
l1.append((s[0] - SNAC_MIN) % 4096)
|
| 225 |
l2.extend([(s[1] - SNAC_MIN) % 4096, (s[4] - SNAC_MIN) % 4096])
|
| 226 |
l3.extend([(s[2] - SNAC_MIN) % 4096, (s[3] - SNAC_MIN) % 4096, (s[5] - SNAC_MIN) % 4096, (s[6] - SNAC_MIN) % 4096])
|
| 227 |
|
| 228 |
+
# move codes to decoder device (snac_device)
|
| 229 |
codes_tensor = [
|
| 230 |
+
torch.tensor(l1, dtype=torch.long, device=snac_device).unsqueeze(0),
|
| 231 |
+
torch.tensor(l2, dtype=torch.long, device=snac_device).unsqueeze(0),
|
| 232 |
+
torch.tensor(l3, dtype=torch.long, device=snac_device).unsqueeze(0),
|
| 233 |
]
|
| 234 |
|
| 235 |
+
# decode to audio on SNAC device
|
| 236 |
with torch.inference_mode():
|
| 237 |
z_q = snac_model.quantizer.from_codes(codes_tensor)
|
| 238 |
audio = snac_model.decoder(z_q)[0, 0].cpu().numpy()
|
| 239 |
|
| 240 |
+
# remove warmup region
|
| 241 |
if len(audio) > 2048:
|
| 242 |
audio = audio[2048:]
|
| 243 |
|
| 244 |
+
out_path = OUT_ROOT / "tts_output_optimized.wav"
|
| 245 |
sf.write(out_path, audio, TARGET_SR)
|
| 246 |
+
logs.append(f"[ok] saved {out_path} duration {len(audio)/TARGET_SR:.2f}s")
|
| 247 |
logs.append(f"[time] elapsed {time.time() - t0:.2f}s")
|
| 248 |
|
| 249 |
return str(out_path), str(out_path), "\n".join(logs)
|
|
|
|
| 253 |
logs.append(f"[error] {e}\n{tb}")
|
| 254 |
return None, None, "\n".join(logs)
|
| 255 |
|
| 256 |
+
|
| 257 |
# --------------
|
| 258 |
+
# UI glue (keeps your layout EXACTLY)
|
| 259 |
# --------------
|
| 260 |
def generate_for_ui(text, preset_name, description, emotion):
|
| 261 |
+
# choose preset description if blank
|
| 262 |
+
if preset_name in PRESET_CHARACTERS and (not description or description.strip() == ""):
|
| 263 |
+
description = PRESET_CHARACTERS[preset_name]["description"]
|
| 264 |
+
|
| 265 |
+
# combine (3a): final_text = f"{emotion} {description}. {text}"
|
| 266 |
+
combined_desc = f"{emotion} {description}".strip()
|
| 267 |
+
final_prompt = build_maya_prompt(combined_desc, text)
|
| 268 |
+
|
| 269 |
+
# call optimized generator
|
| 270 |
+
return generate_from_loaded_model(final_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
|
|
|
|
|
|
| 272 |
|
| 273 |
# -------------------------
|
| 274 |
+
# Gradio UI (unchanged UI layout)
|
| 275 |
# -------------------------
|
| 276 |
css = ".gradio-container {max-width: 1400px}"
|
| 277 |
+
with gr.Blocks(title="NAVA — Maya1 + LoRA + SNAC (Optimized)", css=css) as demo:
|
| 278 |
+
gr.Markdown("# 🪶 NAVA — Maya1 + LoRA + SNAC (Optimized)\nGenerate emotional Hindi speech using Maya1 base + your LoRA adapter.")
|
| 279 |
with gr.Row():
|
| 280 |
with gr.Column(scale=3):
|
| 281 |
gr.Markdown("## Inference (CPU/GPU auto)\nType text + pick a preset or write description manually.")
|
|
|
|
| 306 |
inputs=[text_in, preset_select, description_box, emotion_select],
|
| 307 |
outputs=[audio_player, download_file, gen_logs])
|
| 308 |
|
|
|
|
| 309 |
if __name__ == "__main__":
|
| 310 |
demo.launch()
|