Update app_flash.py
Browse files- app_flash.py +12 -4
app_flash.py
CHANGED
|
@@ -63,12 +63,20 @@ def build_encoder(model_name="gpt2", max_length: int = 32):
|
|
| 63 |
# 3️⃣ Load pretrained FlashPack model (skip training)
|
| 64 |
# ============================================================
|
| 65 |
def load_flashpack_model(hf_repo="rahul7star/FlashPack"):
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
model.
|
| 69 |
-
tokenizer, embed_model, encode_fn = build_encoder("gpt2", max_length=32)
|
| 70 |
return model, tokenizer, embed_model
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
# ============================================================
|
| 74 |
# 4️⃣ Load Gemma text model for prompt enhancement
|
|
|
|
| 63 |
# 3️⃣ Load pretrained FlashPack model (skip training)
|
| 64 |
# ============================================================
|
| 65 |
def load_flashpack_model(hf_repo="rahul7star/FlashPack"):
|
| 66 |
+
model = GemmaTrainer.from_flashpack(hf_repo)
|
| 67 |
+
tokenizer = model.tokenizer if hasattr(model, "tokenizer") else None
|
| 68 |
+
embed_model = model.embed_model if hasattr(model, "embed_model") else None
|
|
|
|
| 69 |
return model, tokenizer, embed_model
|
| 70 |
|
| 71 |
+
# def load_flashpack_model(hf_repo="rahul7star/FlashPack"):
|
| 72 |
+
# print(f"🔁 Loading FlashPack model from: {hf_repo}")
|
| 73 |
+
|
| 74 |
+
# model = GemmaTrainer.from_flashpack(hf_repo)
|
| 75 |
+
|
| 76 |
+
# model.eval()
|
| 77 |
+
# tokenizer, embed_model, encode_fn = build_encoder("gpt2", max_length=32)
|
| 78 |
+
# return model, tokenizer, embed_model
|
| 79 |
+
|
| 80 |
|
| 81 |
# ============================================================
|
| 82 |
# 4️⃣ Load Gemma text model for prompt enhancement
|