Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,872 Bytes
4f22fc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import numpy as np
import torch
import argparse
from dataclasses import dataclass
from arrgh import arrgh
import polyscope as ps
import polyscope.imgui as psim
import potpourri3d as pp3d
import trimesh
import cuml
import xgboost as xgb
import os, random
import sys
sys.path.append("..")
from partfield.utils import *
@dataclass
class State:
objects = None
train_objects = None
# Input options
subsample_inputs: int = -1
n_train_subset: int = 0
# Label
N_class: int = 2
# Annotations
# A annotations (initially A = 0)
anno_feat: np.array = np.zeros((0,448), dtype=np.float32) # [A,F]
anno_label: np.array = np.zeros((0,), dtype=np.int32) # [A]
anno_pos: np.array = np.zeros((0,3), dtype=np.float32) # [A,3]
# Intermediate selection data
is_selecting: bool = False
selection_class: int = 0
# Fitting algorithm
fit_to: str = "Annotations"
fit_method : str = "LogisticRegression"
auto_update_fit: bool = True
# Training data
# T training datapoints
train_feat: np.array = np.zeros((0,448), dtype=np.float32) # [T,F]
train_label: np.array = np.zeros((0,), dtype=np.int32) # [T]
# Viz
grid_w : int = 8
per_obj_shift : float = 2.
anno_radius : float = 0.01
ps_cloud_annotation = None
ps_structure_name_to_index_map = {}
fit_methods_list = ["LinearRegression", "LogisticRegression", "LinearSVC", "RandomForest", "NearestNeighbors", "XGBoost"]
fit_to_list = ["Annotations", "TrainingSet"]
def load_mesh_and_features(mesh_filepath, ind, require_gt=False, gt_label_fol = ""):
dirpath, filename = os.path.split(mesh_filepath)
filename_core = filename[9:-6] # splits off "feat_pca_" ... "_0.ply"
feature_filename = "part_feat_"+ filename_core + "_0_batch.npy"
feature_filepath = os.path.join(dirpath, feature_filename)
gt_filename = filename_core + ".seg"
gt_filepath = os.path.join(gt_label_fol, gt_filename)
have_gt = os.path.isfile(gt_filepath)
print(" Reading file:")
print(f" Mesh filename: {mesh_filepath}")
print(f" Feature filename: {feature_filepath}")
print(f" Ground Truth Label filename: {gt_filepath} -- present = {have_gt}")
# load features
feat = np.load(feature_filepath, allow_pickle=False)
feat = feat.astype(np.float32)
# load mesh things
# TODO replace this with just loading V/F from numpy archive
tm = load_mesh_util(mesh_filepath)
V = np.array(tm.vertices, dtype=np.float32)
F = np.array(tm.faces)
# load ground truth, if available
if have_gt:
gt_labels = np.loadtxt(gt_filepath)
gt_labels = gt_labels.astype(np.int32) - 1
else:
if require_gt:
raise ValueError("could not find ground-truth file, but it is required")
gt_labels = None
# pca_colors = None
return {
'nicename' : f"{ind:02d}_{filename_core}",
'mesh_filepath' : mesh_filepath,
'feature_filepath' : feature_filepath,
'V' : V,
'F' : F,
'feat_np' : feat,
# 'feat_pt' : torch.tensor(feat, device='cuda'),
'gt_labels' : gt_labels
}
def shift_for_ind(state : State, ind):
x_ind = ind % state.grid_w
y_ind = ind // state.grid_w
shift = np.array([state.per_obj_shift * x_ind, 0, -state.per_obj_shift * y_ind])
return shift
def viz_upper_limit(state : State, ind_count):
x_max = min(ind_count, state.grid_w)
y_max = ind_count // state.grid_w
bound = np.array([state.per_obj_shift * x_max, 0, -state.per_obj_shift * y_max])
return bound
def initialize_object_viz(state : State, obj, index=0):
obj['ps_mesh'] = ps.register_surface_mesh(obj['nicename'], obj['V'], obj['F'], color=(.8, .8, .8))
shift = shift_for_ind(state, index)
obj['ps_mesh'].translate(shift)
obj['ps_mesh'].set_selection_mode('faces_only')
state.ps_structure_name_to_index_map[obj['nicename']] = index
def update_prediction(state: State):
print("Updating predictions..")
N_anno = state.anno_label.shape[0]
# Quick out if we don't have at least two distinct class labels present
if(state.fit_to == "Annotations" and len(np.unique(state.anno_label)) <= 1):
return state
# Quick out if we don't have
if(state.fit_to == "TrainingSet" and state.train_objects is None):
return state
if state.fit_method == "LinearRegression":
classifier = cuml.multiclass.MulticlassClassifier(cuml.linear_model.LinearRegression(), strategy='ovr')
elif state.fit_method == "LogisticRegression":
classifier = cuml.multiclass.MulticlassClassifier(cuml.linear_model.LogisticRegression(), strategy='ovr')
elif state.fit_method == "LinearSVC":
classifier = cuml.multiclass.MulticlassClassifier(cuml.svm.LinearSVC(), strategy='ovr')
elif state.fit_method == "RandomForest":
classifier = cuml.ensemble.RandomForestClassifier()
elif state.fit_method == "NearestNeighbors":
classifier = cuml.multiclass.MulticlassClassifier(cuml.neighbors.KNeighborsRegressor(n_neighbors=1), strategy='ovr')
elif state.fit_method == "XGBoost":
classifier = xgb.XGBClassifier(max_depth=7, n_estimators=1000)
else:
raise ValueError("unrecognized fit method")
if state.fit_to == "TrainingSet":
all_train_feats = []
all_train_labels = []
for obj in state.train_objects:
all_train_feats.append(obj['feat_np'])
all_train_labels.append(obj['gt_labels'])
all_train_feats = np.concatenate(all_train_feats, axis=0)
all_train_labels = np.concatenate(all_train_labels, axis=0)
state.N_class = np.max(all_train_labels) + 1
classifier.fit(all_train_feats, all_train_labels)
elif state.fit_to == "Annotations":
classifier.fit(state.anno_feat,state.anno_label)
else:
raise ValueError("unrecognized fit to")
n_total = 0
n_correct = 0
for obj in state.objects:
obj['pred_label'] = classifier.predict(obj['feat_np'])
if obj['gt_labels'] is not None:
n_total += obj['gt_labels'].shape[0]
n_correct += np.sum(obj['pred_label'] == obj['gt_labels'], dtype=np.int32)
if(state.fit_to == "TrainingSet" and n_total > 0):
frac = n_correct / n_total
print(f"Test accuracy: {n_correct:d} / {n_total:d} {100*frac:.02f}%")
print("Done updating predictions.")
return state
def update_prediction_viz(state: State):
for obj in state.objects:
if 'pred_label' in obj:
obj['ps_mesh'].add_scalar_quantity("pred labels", obj['pred_label'], defined_on='faces', vminmax=(0,state.N_class-1), cmap='turbo', enabled=True)
return state
def update_annotation_viz(state: State):
ps_cloud = ps.register_point_cloud("annotations", state.anno_pos, radius=state.anno_radius, material='candy')
ps_cloud.add_scalar_quantity("labels", state.anno_label, vminmax=(0,state.N_class-1), cmap='turbo', enabled=True)
state.ps_cloud_annotation = ps_cloud
return state
def filter_old_labels(state: State):
"""
Filter out annotations from classes that don't exist any more
"""
keep_mask = state.anno_label < state.N_class
state.anno_feat = state.anno_feat[keep_mask,:]
state.anno_label = state.anno_label[keep_mask]
state.anno_pos = state.anno_pos[keep_mask,:]
return state
def undo_last_annotation(state: State):
state.anno_feat = state.anno_feat[:-1,:]
state.anno_label = state.anno_label[:-1]
state.anno_pos = state.anno_pos[:-1,:]
return state
def ps_callback(state_list):
state : State = state_list[0] # hacky pass-by-reference, since we want to edit it below
# If we're in selection mode, that's the only thing we can do
if state.is_selecting:
psim.TextUnformatted(f"Annotating class {state.selection_class:02d}. Click on any mesh face.")
io = psim.GetIO()
if io.MouseClicked[0]:
screen_coords = io.MousePos
pick_result = ps.pick(screen_coords=screen_coords)
# Check if we hit one of the meshes
if pick_result.is_hit and pick_result.structure_name in state.ps_structure_name_to_index_map:
if pick_result.structure_data['element_type'] != "face":
# shouldn't be possible
raise ValueError("pick returned non-face")
i_obj = state.ps_structure_name_to_index_map[pick_result.structure_name]
f_hit = pick_result.structure_data['index']
obj = state.objects[i_obj]
V = obj['V']
F = obj['F']
feat = obj['feat_np']
face_corners = V[F[f_hit,:],:]
new_anno_feat = feat[f_hit,:]
new_anno_label = state.selection_class
new_anno_pos = np.mean(face_corners, axis=0) + shift_for_ind(state, i_obj)
state.anno_feat = np.concatenate((state.anno_feat, new_anno_feat[None,:]))
state.anno_label = np.concatenate((state.anno_label, np.array((new_anno_label,))))
state.anno_pos = np.concatenate((state.anno_pos, new_anno_pos[None,:]))
state = update_annotation_viz(state)
state.is_selecting = False
needs_pred_update = True
if state.auto_update_fit:
state = update_prediction(state)
state = update_prediction_viz(state)
return
# If not selecting, build the main UI
needs_pred_update = False
psim.PushItemWidth(150)
changed, state.N_class = psim.InputInt("N_class", state.N_class, step=1)
psim.PopItemWidth()
if changed:
state = filter_old_labels(state)
state = update_annotation_viz(state)
# Check for keypress annotation
io = psim.GetIO()
class_keys = { 'w' : 0, '1' : 1, '2' : 2, '3' : 3, '4' : 4, '5' : 5, '6' : 6, '7' : 7, '8' : 8, '9' : 9,}
for c in class_keys:
if class_keys[c] >= state.N_class:
continue
if psim.IsKeyPressed(ps.get_key_code(c)):
state.is_selecting = True
state.selection_class = class_keys[c]
psim.SetNextItemOpen(True, psim.ImGuiCond_FirstUseEver)
if(psim.TreeNode("Annotate")):
psim.TextUnformatted("New class annotation. Select class to add add annotation for:")
psim.TextUnformatted("(alternately, press key {w,1,2,3,4...})")
for i_class in range(state.N_class):
if i_class > 0:
psim.SameLine()
if psim.Button(f"{i_class:02d}"):
state.is_selecting = True
state.selection_class = i_class
if psim.Button("Undo Last Annotation"):
state = undo_last_annotation(state)
state = update_annotation_viz(state)
needs_pred_update = True
psim.TreePop()
psim.SetNextItemOpen(True, psim.ImGuiCond_FirstUseEver)
if(psim.TreeNode("Fit")):
psim.PushItemWidth(150)
changed, ind = psim.Combo("Fit To", fit_to_list.index(state.fit_to), fit_to_list)
if changed:
state.fit_to = fit_methods_list[ind]
needs_pred_update = True
changed, ind = psim.Combo("Fit Method", fit_methods_list.index(state.fit_method), fit_methods_list)
if changed:
state.fit_method = fit_methods_list[ind]
needs_pred_update = True
if psim.Button("Update fit"):
state = update_prediction(state)
state = update_prediction_viz(state)
psim.SameLine()
changed, state.auto_update_fit = psim.Checkbox("Auto-update fit", state.auto_update_fit)
if changed:
needs_pred_update = True
psim.PopItemWidth()
psim.TreePop()
psim.SetNextItemOpen(True, psim.ImGuiCond_FirstUseEver)
if(psim.TreeNode("Visualization")):
psim.PushItemWidth(150)
changed, state.anno_radius = psim.SliderFloat("Annotation Point Radius", state.anno_radius, 0.00001, 0.02)
if changed:
state = update_annotation_viz(state)
psim.PopItemWidth()
psim.TreePop()
if needs_pred_update and state.auto_update_fit:
state = update_prediction(state)
state = update_prediction_viz(state)
def main():
state = State()
## Parse args
parser = argparse.ArgumentParser()
parser.add_argument('--meshes', nargs='+', help='List of meshes to process.', required=True)
parser.add_argument('--n_train_subset', default=0, help='How many meshes to train on.')
parser.add_argument('--gt_label_fol', default="../data/coseg_guitar/gt", help='Path where labels are stored.')
parser.add_argument('--subsample_inputs', default=state.subsample_inputs, help='Only show a random fraction of inputs')
parser.add_argument('--per_obj_shift', default=state.per_obj_shift, help='How to space out objects in UI grid')
parser.add_argument('--grid_w', default=state.grid_w, help='Grid width')
args = parser.parse_args()
state.n_train_subset = int(args.n_train_subset)
state.subsample_inputs = int(args.subsample_inputs)
state.per_obj_shift = float(args.per_obj_shift)
state.grid_w = int(args.grid_w)
## Load data
# First, resolve directories to load all files in directory
all_filepaths = []
print("Resolving passed directories")
for entry in args.meshes:
if os.path.isdir(entry):
dir_path = entry
print(f" processing directory {dir_path}")
for filename in os.listdir(dir_path):
file_path = os.path.join(dir_path, filename)
if os.path.isfile(file_path) and file_path.endswith(".ply") and "feat_pca" in file_path:
print(f" adding file {file_path}")
all_filepaths.append(file_path)
else:
all_filepaths.append(entry)
random.shuffle(all_filepaths)
if state.subsample_inputs != -1:
all_filepaths = all_filepaths[:state.subsample_inputs]
if state.n_train_subset != 0:
print(state.n_train_subset)
train_filepaths = all_filepaths[:state.n_train_subset]
all_filepaths = all_filepaths[state.n_train_subset:]
print(f"Loading {len(train_filepaths)} files")
state.train_objects = []
for i, file_path in enumerate(train_filepaths):
state.train_objects.append(load_mesh_and_features(file_path, i, require_gt=True, gt_label_fol=args.gt_label_fol))
state.fit_to = "TrainingSet"
# Load files
print(f"Loading {len(all_filepaths)} files")
state.objects = []
for i, file_path in enumerate(all_filepaths):
state.objects.append(load_mesh_and_features(file_path, i))
## Set up visualization
ps.init()
ps.set_automatically_compute_scene_extents(False)
lim = viz_upper_limit(state, len(state.objects))
ps.set_length_scale(np.linalg.norm(lim) / 4.)
low = np.array((0, -1., -1.))
high = lim
ps.set_bounding_box(low, high)
for ind, o in enumerate(state.objects):
initialize_object_viz(state, o, ind)
print(f"Loaded {len(state.objects)} objects")
if state.n_train_subset != 0:
print(f"Loaded {len(state.train_objects)} training objects")
# One first prediction
# (does nothing if there is no annotatoins / training data)
state = update_prediction(state)
state = update_prediction_viz(state)
# Start the interactive UI
ps.set_user_callback(lambda : ps_callback([state]))
ps.show()
if __name__ == "__main__":
main()
|