Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,172 Bytes
4f22fc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import numpy as np
import torch
import polyscope as ps
import polyscope.imgui as psim
import potpourri3d as pp3d
import trimesh
import igl
from dataclasses import dataclass
from simple_parsing import ArgumentParser
from arrgh import arrgh
### For clustering
from collections import defaultdict
from sklearn.cluster import AgglomerativeClustering, DBSCAN, KMeans
from scipy.sparse import coo_matrix, csr_matrix
from scipy.spatial import KDTree
from scipy.sparse.csgraph import connected_components
from sklearn.neighbors import NearestNeighbors
import networkx as nx
from scipy.optimize import linear_sum_assignment
import os, sys
sys.path.append("..")
from partfield.utils import *
@dataclass
class Options:
""" Basic Options """
filename: str
filename_alt: str = None
"""System Options"""
device: str = "cuda" # Device
debug: bool = False # enable debug checks
extras: bool = False # include extra output for viz/debugging
""" State """
mode: str = 'co-segmentation'
m: dict = None # mesh
m_alt: dict = None # second mesh
# pca mode
# feature explore mode
i_feature: int = 0
i_cluster: int = 1
i_cluster2: int = 1
i_eps: int = 0.6
### For mixing in clustering
weight_dist = 1.0
weight_feat = 1.0
### For clustering visualization
independent: bool = True
source_init: bool = True
feature_range: float = 0.1
continuous_explore: bool = False
viz_mode: str = "faces"
output_fol: str = "results_pair"
### counter for screenshot
counter: int = 0
modes_list = ['feature_explore', "co-segmentation"]
def load_features(feature_filename, mesh_filename, viz_mode):
print("Reading features:")
print(f" Feature filename: {feature_filename}")
print(f" Mesh filename: {mesh_filename}")
# load features
feat = np.load(feature_filename, allow_pickle=True)
feat = feat.astype(np.float32)
# load mesh things
tm = load_mesh_util(mesh_filename)
V = np.array(tm.vertices, dtype=np.float32)
F = np.array(tm.faces)
if viz_mode == "faces":
pca_colors = np.array(tm.visual.face_colors, dtype=np.float32)
pca_colors = pca_colors[:,:3] / 255.
else:
pca_colors = np.array(tm.visual.vertex_colors, dtype=np.float32)
pca_colors = pca_colors[:,:3] / 255.
arrgh(V, F, pca_colors, feat)
return {
'V' : V,
'F' : F,
'pca_colors' : pca_colors,
'feat_np' : feat,
'feat_pt' : torch.tensor(feat, device='cuda'),
'trimesh' : tm,
'label' : None,
'num_cluster' : 1,
'scalar' : None
}
def prep_feature_mesh(m, name='mesh'):
ps_mesh = ps.register_surface_mesh(name, m['V'], m['F'])
ps_mesh.set_selection_mode('faces_only')
m['ps_mesh'] = ps_mesh
def viz_pca_colors(m):
m['ps_mesh'].add_color_quantity('pca colors', m['pca_colors'], enabled=True, defined_on=m["viz_mode"])
def viz_feature(m, ind):
m['ps_mesh'].add_scalar_quantity('pca colors', m['feat_np'][:,ind], cmap='turbo', enabled=True, defined_on=m["viz_mode"])
def feature_distance_np(feats, query_feat):
# normalize
feats = feats / np.linalg.norm(feats,axis=1)[:,None]
query_feat = query_feat / np.linalg.norm(query_feat)
# cosine distance
cos_sim = np.dot(feats, query_feat)
cos_dist = (1 - cos_sim) / 2.
return cos_dist
def feature_distance_pt(feats, query_feat):
return (1. - torch.nn.functional.cosine_similarity(feats, query_feat[None,:], dim=-1)) / 2.
def ps_callback(opts):
m = opts.m
changed, ind = psim.Combo("Mode", modes_list.index(opts.mode), modes_list)
if changed:
opts.mode = modes_list[ind]
m['ps_mesh'].remove_all_quantities()
if opts.m_alt is not None:
opts.m_alt['ps_mesh'].remove_all_quantities()
elif opts.mode == 'feature_explore':
psim.TextUnformatted("Click on the mesh on the left")
psim.TextUnformatted("to highlight all faces within a given radius in feature space.""")
io = psim.GetIO()
if io.MouseClicked[0] or opts.continuous_explore:
screen_coords = io.MousePos
cam_params = ps.get_view_camera_parameters()
pick_result = ps.pick(screen_coords=screen_coords)
# Check if we hit one of the meshes
if pick_result.is_hit and pick_result.structure_name == "mesh":
if pick_result.structure_data['element_type'] != "face":
# shouldn't be possible
raise ValueError("pick returned non-face")
f_hit = pick_result.structure_data['index']
bary_weights = np.array(pick_result.structure_data['bary_coords'])
# get the feature via interpolation
point_feat = m['feat_np'][f_hit,:]
point_feat_pt = torch.tensor(point_feat, device='cuda')
all_dists1 = feature_distance_pt(m['feat_pt'], point_feat_pt).detach().cpu().numpy()
m['ps_mesh'].add_scalar_quantity("distance", all_dists1, cmap='blues', vminmax=(0, opts.feature_range), enabled=True, defined_on=m["viz_mode"])
opts.m['scalar'] = all_dists1
if opts.m_alt is not None:
all_dists2 = feature_distance_pt(opts.m_alt['feat_pt'], point_feat_pt).detach().cpu().numpy()
opts.m_alt['ps_mesh'].add_scalar_quantity("distance", all_dists2, cmap='blues', vminmax=(0, opts.feature_range), enabled=True, defined_on=m["viz_mode"])
opts.m_alt['scalar'] = all_dists2
else:
# not hit
pass
if psim.Button("Export"):
### Save output
OUTPUT_FOL = opts.output_fol
fname1 = opts.filename
out_mesh_file = os.path.join(OUTPUT_FOL, fname1+'.obj')
igl.write_obj(out_mesh_file, opts.m["V"], opts.m["F"])
print("Saved '{}'.".format(out_mesh_file))
out_face_ids_file = os.path.join(OUTPUT_FOL, fname1 + '_feat_dist_' + str(opts.counter) +'.txt')
np.savetxt(out_face_ids_file, opts.m['scalar'], fmt='%f')
print("Saved '{}'.".format(out_face_ids_file))
fname2 = opts.filename_alt
out_mesh_file = os.path.join(OUTPUT_FOL, fname2+'.obj')
igl.write_obj(out_mesh_file, opts.m_alt["V"], opts.m_alt["F"])
print("Saved '{}'.".format(out_mesh_file))
out_face_ids_file = os.path.join(OUTPUT_FOL, fname2 + '_feat_dist_' + str(opts.counter) +'.txt')
np.savetxt(out_face_ids_file, opts.m_alt['scalar'], fmt='%f')
# print("Saved '{}'.".format(out_face_ids_file))
opts.counter += 1
_, opts.feature_range = psim.SliderFloat('range', opts.feature_range, v_min=0., v_max=1.0, power=3)
_, opts.continuous_explore = psim.Checkbox('continuous', opts.continuous_explore)
# TODO nsharp remember how the keycodes work
if io.KeysDown[ord('q')]:
opts.feature_range += 0.01
if io.KeysDown[ord('w')]:
opts.feature_range -= 0.01
elif opts.mode == "co-segmentation":
changed, opts.source_init = psim.Checkbox("Source Init", opts.source_init)
changed, opts.independent = psim.Checkbox("Independent", opts.independent)
psim.TextUnformatted("Use the slider to toggle the number of desired clusters.")
cluster_changed, opts.i_cluster = psim.SliderInt("num clusters for model1", opts.i_cluster, v_min=1, v_max=30)
cluster_changed, opts.i_cluster2 = psim.SliderInt("num clusters for model2", opts.i_cluster2, v_min=1, v_max=30)
# if cluster_changed:
if psim.Button("Recompute"):
### Run clustering algorithm
### Mesh 1
num_clusters1 = opts.i_cluster
point_feat1 = m['feat_np']
point_feat1 = point_feat1 / np.linalg.norm(point_feat1, axis=-1, keepdims=True)
clustering1 = KMeans(n_clusters=num_clusters1, random_state=0, n_init="auto").fit(point_feat1)
### Get feature means per cluster
feature_means1 = []
for j in range(num_clusters1):
all_cluster_feat = point_feat1[clustering1.labels_==j]
mean_feat = np.mean(all_cluster_feat, axis=0)
feature_means1.append(mean_feat)
feature_means1 = np.array(feature_means1)
tree = KDTree(feature_means1)
if opts.source_init:
num_clusters2 = opts.i_cluster
init_mode = np.array(feature_means1)
## default is kmeans++
else:
num_clusters2 = opts.i_cluster2
init_mode = "k-means++"
### Mesh 2
point_feat2 = opts.m_alt['feat_np']
point_feat2 = point_feat2 / np.linalg.norm(point_feat2, axis=-1, keepdims=True)
clustering2 = KMeans(n_clusters=num_clusters2, random_state=0, init=init_mode).fit(point_feat2)
### Get feature means per cluster
feature_means2 = []
for j in range(num_clusters2):
all_cluster_feat = point_feat2[clustering2.labels_==j]
mean_feat = np.mean(all_cluster_feat, axis=0)
feature_means2.append(mean_feat)
feature_means2 = np.array(feature_means2)
_, nn_idx = tree.query(feature_means2, k=1)
print(nn_idx)
print("Both KMeans")
print(np.unique(clustering1.labels_))
print(np.unique(clustering2.labels_))
relabelled_2 = nn_idx[clustering2.labels_]
print(np.unique(relabelled_2))
print()
m['ps_mesh'].add_scalar_quantity("cluster_both_kmeans", clustering1.labels_, cmap='turbo', vminmax=(0, num_clusters1-1), enabled=True, defined_on=m["viz_mode"])
opts.m['label'] = clustering1.labels_
opts.m['num_cluster'] = num_clusters1
if opts.independent:
opts.m_alt['ps_mesh'].add_scalar_quantity("cluster", clustering2.labels_, cmap='turbo', vminmax=(0, num_clusters2-1), enabled=True, defined_on=m["viz_mode"])
opts.m_alt['label'] = clustering2.labels_
opts.m_alt['num_cluster'] = num_clusters2
else:
opts.m_alt['ps_mesh'].add_scalar_quantity("cluster", relabelled_2, cmap='turbo', vminmax=(0, num_clusters1-1), enabled=True, defined_on=m["viz_mode"])
opts.m_alt['label'] = relabelled_2
opts.m_alt['num_cluster'] = num_clusters1
if psim.Button("Export"):
### Save output
OUTPUT_FOL = opts.output_fol
fname1 = opts.filename
out_mesh_file = os.path.join(OUTPUT_FOL, fname1+'.obj')
igl.write_obj(out_mesh_file, opts.m["V"], opts.m["F"])
print("Saved '{}'.".format(out_mesh_file))
if m["viz_mode"] == "faces":
out_face_ids_file = os.path.join(OUTPUT_FOL, fname1 + "_" + str(opts.m['num_cluster']) + '_pred_face_ids.txt')
else:
out_face_ids_file = os.path.join(OUTPUT_FOL, fname1 + "_" + str(opts.m['num_cluster']) + '_pred_vertices_ids.txt')
np.savetxt(out_face_ids_file, opts.m['label'], fmt='%d')
print("Saved '{}'.".format(out_face_ids_file))
fname2 = opts.filename_alt
out_mesh_file = os.path.join(OUTPUT_FOL, fname2 +'.obj')
igl.write_obj(out_mesh_file, opts.m_alt["V"], opts.m_alt["F"])
print("Saved '{}'.".format(out_mesh_file))
if m["viz_mode"] == "faces":
out_face_ids_file = os.path.join(OUTPUT_FOL, fname2 + "_" + str(opts.m_alt['num_cluster']) + '_pred_face_ids.txt')
else:
out_face_ids_file = os.path.join(OUTPUT_FOL, fname2 + "_" + str(opts.m_alt['num_cluster']) + '_pred_vertices_ids.txt')
np.savetxt(out_face_ids_file, opts.m_alt['label'], fmt='%d')
print("Saved '{}'.".format(out_face_ids_file))
def main():
## Parse args
# Uses simple_parsing library to automatically construct parser from the dataclass Options
parser = ArgumentParser()
parser.add_arguments(Options, dest="options")
parser.add_argument('--data_root', default="../exp_results/partfield_features/trellis", help='Path the model features are stored.')
args = parser.parse_args()
opts: Options = args.options
DATA_ROOT = args.data_root
shape_1 = opts.filename
shape_2 = opts.filename_alt
if os.path.exists(os.path.join(DATA_ROOT, "part_feat_"+ shape_1 + "_0.npy")):
feature_fname1 = os.path.join(DATA_ROOT, "part_feat_"+ shape_1 + "_0.npy")
feature_fname2 = os.path.join(DATA_ROOT, "part_feat_"+ shape_2 + "_0.npy")
mesh_fname1 = os.path.join(DATA_ROOT, "feat_pca_"+ shape_1 + "_0.ply")
mesh_fname2 = os.path.join(DATA_ROOT, "feat_pca_"+ shape_2 + "_0.ply")
else:
feature_fname1 = os.path.join(DATA_ROOT, "part_feat_"+ shape_1 + "_0_batch.npy")
feature_fname2 = os.path.join(DATA_ROOT, "part_feat_"+ shape_2 + "_0_batch.npy")
mesh_fname1 = os.path.join(DATA_ROOT, "feat_pca_"+ shape_1 + "_0.ply")
mesh_fname2 = os.path.join(DATA_ROOT, "feat_pca_"+ shape_2 + "_0.ply")
#### To save output ####
os.makedirs(opts.output_fol, exist_ok=True)
########################
# Initialize
ps.init()
mesh_dict = load_features(feature_fname1, mesh_fname1, opts.viz_mode)
prep_feature_mesh(mesh_dict)
mesh_dict["viz_mode"] = opts.viz_mode
opts.m = mesh_dict
mesh_dict_alt = load_features(feature_fname2, mesh_fname2, opts.viz_mode)
prep_feature_mesh(mesh_dict_alt, name='mesh_alt')
mesh_dict_alt['ps_mesh'].translate((2.5, 0., 0.))
mesh_dict_alt["viz_mode"] = opts.viz_mode
opts.m_alt = mesh_dict_alt
# Start the interactive UI
ps.set_user_callback(lambda : ps_callback(opts))
ps.show()
if __name__ == "__main__":
main()
|