Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,821 Bytes
4f22fc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 |
from sklearn.cluster import AgglomerativeClustering, KMeans
import numpy as np
import trimesh
import matplotlib.pyplot as plt
import numpy as np
import os
import argparse
import time
import json
from os.path import join
from typing import List
from collections import defaultdict
from scipy.sparse import coo_matrix, csr_matrix
from scipy.sparse.csgraph import connected_components
from sklearn.neighbors import NearestNeighbors
import networkx as nx
from plyfile import PlyData
import open3d as o3d
from partfield.utils import *
#### Export to file #####
def export_colored_mesh_ply(V, F, FL, filename='segmented_mesh.ply'):
"""
Export a mesh with per-face segmentation labels into a colored PLY file.
Parameters:
- V (np.ndarray): Vertices array of shape (N, 3)
- F (np.ndarray): Faces array of shape (M, 3)
- FL (np.ndarray): Face labels of shape (M,)
- filename (str): Output filename
"""
assert V.shape[1] == 3
assert F.shape[1] == 3
assert F.shape[0] == FL.shape[0]
# Generate distinct colors for each unique label
unique_labels = np.unique(FL)
colormap = plt.cm.get_cmap("tab20", len(unique_labels))
label_to_color = {
label: (np.array(colormap(i)[:3]) * 255).astype(np.uint8)
for i, label in enumerate(unique_labels)
}
mesh = trimesh.Trimesh(vertices=V, faces=F)
FL = np.squeeze(FL)
for i, face in enumerate(F):
label = FL[i]
color = label_to_color[label]
color_with_alpha = np.append(color, 255) # Add alpha value
mesh.visual.face_colors[i] = color_with_alpha
mesh.export(filename)
print(f"Exported mesh to {filename}")
def export_pointcloud_with_labels_to_ply(V, VL, filename='colored_pointcloud.ply'):
"""
Export a labeled point cloud to a PLY file with vertex colors.
Parameters:
- V: (N, 3) numpy array of XYZ coordinates
- VL: (N,) numpy array of integer labels
- filename: Output PLY file name
"""
assert V.shape[0] == VL.shape[0], "Number of vertices and labels must match"
# Generate unique colors for each label
unique_labels = np.unique(VL)
colormap = plt.cm.get_cmap("tab20", len(unique_labels))
label_to_color = {
label: colormap(i)[:3] for i, label in enumerate(unique_labels)
}
VL = np.squeeze(VL)
# Map labels to RGB colors
colors = np.array([label_to_color[label] for label in VL])
# Open3D requires colors in float [0, 1]
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(V)
pcd.colors = o3d.utility.Vector3dVector(colors)
# Save to .ply
o3d.io.write_point_cloud(filename, pcd)
print(f"Point cloud saved to {filename}")
#########################
#########################
def construct_face_adjacency_matrix_ccmst(face_list, vertices, k=10, with_knn=True):
"""
Given a list of faces (each face is a 3-tuple of vertex indices),
construct a face-based adjacency matrix of shape (num_faces, num_faces).
Two faces are adjacent if they share an edge (the "mesh adjacency").
If multiple connected components remain, we:
1) Compute the centroid of each connected component as the mean of all face centroids.
2) Use a KNN graph (k=10) based on centroid distances on each connected component.
3) Compute MST of that KNN graph.
4) Add MST edges that connect different components as "dummy" edges
in the face adjacency matrix, ensuring one connected component. The selected face for
each connected component is the face closest to the component centroid.
Parameters
----------
face_list : list of tuples
List of faces, each face is a tuple (v0, v1, v2) of vertex indices.
vertices : np.ndarray of shape (num_vertices, 3)
Array of vertex coordinates.
k : int, optional
Number of neighbors to use in centroid KNN. Default is 10.
Returns
-------
face_adjacency : scipy.sparse.csr_matrix
A CSR sparse matrix of shape (num_faces, num_faces),
containing 1s for adjacent faces (shared-edge adjacency)
plus dummy edges ensuring a single connected component.
"""
num_faces = len(face_list)
if num_faces == 0:
# Return an empty matrix if no faces
return csr_matrix((0, 0))
#--------------------------------------------------------------------------
# 1) Build adjacency based on shared edges.
# (Same logic as the original code, plus import statements.)
#--------------------------------------------------------------------------
edge_to_faces = defaultdict(list)
uf = UnionFind(num_faces)
for f_idx, (v0, v1, v2) in enumerate(face_list):
# Sort each edge’s endpoints so (i, j) == (j, i)
edges = [
tuple(sorted((v0, v1))),
tuple(sorted((v1, v2))),
tuple(sorted((v2, v0)))
]
for e in edges:
edge_to_faces[e].append(f_idx)
row = []
col = []
for edge, face_indices in edge_to_faces.items():
unique_faces = list(set(face_indices))
if len(unique_faces) > 1:
# For every pair of distinct faces that share this edge,
# mark them as mutually adjacent
for i in range(len(unique_faces)):
for j in range(i + 1, len(unique_faces)):
fi = unique_faces[i]
fj = unique_faces[j]
row.append(fi)
col.append(fj)
row.append(fj)
col.append(fi)
uf.union(fi, fj)
data = np.ones(len(row), dtype=np.int8)
face_adjacency = coo_matrix(
(data, (row, col)), shape=(num_faces, num_faces)
).tocsr()
#--------------------------------------------------------------------------
# 2) Check if the graph from shared edges is already connected.
#--------------------------------------------------------------------------
n_components = 0
for i in range(num_faces):
if uf.find(i) == i:
n_components += 1
print("n_components", n_components)
if n_components == 1:
# Already a single connected component, no need for dummy edges
return face_adjacency
#--------------------------------------------------------------------------
# 3) Compute centroids of each face for building a KNN graph.
#--------------------------------------------------------------------------
face_centroids = []
for (v0, v1, v2) in face_list:
centroid = (vertices[v0] + vertices[v1] + vertices[v2]) / 3.0
face_centroids.append(centroid)
face_centroids = np.array(face_centroids)
# #--------------------------------------------------------------------------
# # 4a) Build a KNN graph (k=10) over face centroids using scikit‐learn
# #--------------------------------------------------------------------------
# knn = NearestNeighbors(n_neighbors=k, algorithm='auto')
# knn.fit(face_centroids)
# distances, indices = knn.kneighbors(face_centroids)
# # 'distances[i]' are the distances from face i to each of its 'k' neighbors
# # 'indices[i]' are the face indices of those neighbors
#--------------------------------------------------------------------------
# 4b) Build a KNN graph on connected components
#--------------------------------------------------------------------------
# Group faces by their root representative in the Union-Find structure
component_dict = {}
for face_idx in range(num_faces):
root = uf.find(face_idx)
if root not in component_dict:
component_dict[root] = set()
component_dict[root].add(face_idx)
connected_components = list(component_dict.values())
print("Using connected component MST.")
component_centroid_face_idx = []
connected_component_centroids = []
knn = NearestNeighbors(n_neighbors=1, algorithm='auto')
for component in connected_components:
curr_component_faces = list(component)
curr_component_face_centroids = face_centroids[curr_component_faces]
component_centroid = np.mean(curr_component_face_centroids, axis=0)
### Assign a face closest to the centroid
face_idx = curr_component_faces[np.argmin(np.linalg.norm(curr_component_face_centroids-component_centroid, axis=-1))]
connected_component_centroids.append(component_centroid)
component_centroid_face_idx.append(face_idx)
component_centroid_face_idx = np.array(component_centroid_face_idx)
connected_component_centroids = np.array(connected_component_centroids)
if n_components < k:
knn = NearestNeighbors(n_neighbors=n_components, algorithm='auto')
else:
knn = NearestNeighbors(n_neighbors=k, algorithm='auto')
knn.fit(connected_component_centroids)
distances, indices = knn.kneighbors(connected_component_centroids)
#--------------------------------------------------------------------------
# 5) Build a weighted graph in NetworkX using centroid-distances as edges
#--------------------------------------------------------------------------
G = nx.Graph()
# Add each face as a node in the graph
G.add_nodes_from(range(num_faces))
# For each face i, add edges (i -> j) for each neighbor j in the KNN
for idx1 in range(n_components):
i = component_centroid_face_idx[idx1]
for idx2, dist in zip(indices[idx1], distances[idx1]):
j = component_centroid_face_idx[idx2]
if i == j:
continue # skip self-loop
# Add an undirected edge with 'weight' = distance
# NetworkX handles parallel edges gracefully via last add_edge,
# but it typically overwrites the weight if (i, j) already exists.
G.add_edge(i, j, weight=dist)
#--------------------------------------------------------------------------
# 6) Compute MST on that KNN graph
#--------------------------------------------------------------------------
mst = nx.minimum_spanning_tree(G, weight='weight')
# Sort MST edges by ascending weight, so we add the shortest edges first
mst_edges_sorted = sorted(
mst.edges(data=True), key=lambda e: e[2]['weight']
)
print("mst edges sorted", len(mst_edges_sorted))
#--------------------------------------------------------------------------
# 7) Use a union-find structure to add MST edges only if they
# connect two currently disconnected components of the adjacency matrix
#--------------------------------------------------------------------------
# Convert face_adjacency to LIL format for efficient edge addition
adjacency_lil = face_adjacency.tolil()
# Now, step through MST edges in ascending order
for (u, v, attr) in mst_edges_sorted:
if uf.find(u) != uf.find(v):
# These belong to different components, so unify them
uf.union(u, v)
# And add a "dummy" edge to our adjacency matrix
adjacency_lil[u, v] = 1
adjacency_lil[v, u] = 1
# Convert back to CSR format and return
face_adjacency = adjacency_lil.tocsr()
if with_knn:
print("Adding KNN edges.")
### Add KNN edges graph too
dummy_row = []
dummy_col = []
for idx1 in range(n_components):
i = component_centroid_face_idx[idx1]
for idx2 in indices[idx1]:
j = component_centroid_face_idx[idx2]
dummy_row.extend([i, j])
dummy_col.extend([j, i]) ### duplicates are handled by coo
dummy_data = np.ones(len(dummy_row), dtype=np.int16)
dummy_mat = coo_matrix(
(dummy_data, (dummy_row, dummy_col)),
shape=(num_faces, num_faces)
).tocsr()
face_adjacency = face_adjacency + dummy_mat
###########################
return face_adjacency
#########################
def construct_face_adjacency_matrix_facemst(face_list, vertices, k=10, with_knn=True):
"""
Given a list of faces (each face is a 3-tuple of vertex indices),
construct a face-based adjacency matrix of shape (num_faces, num_faces).
Two faces are adjacent if they share an edge (the "mesh adjacency").
If multiple connected components remain, we:
1) Compute the centroid of each face.
2) Use a KNN graph (k=10) based on centroid distances.
3) Compute MST of that KNN graph.
4) Add MST edges that connect different components as "dummy" edges
in the face adjacency matrix, ensuring one connected component.
Parameters
----------
face_list : list of tuples
List of faces, each face is a tuple (v0, v1, v2) of vertex indices.
vertices : np.ndarray of shape (num_vertices, 3)
Array of vertex coordinates.
k : int, optional
Number of neighbors to use in centroid KNN. Default is 10.
Returns
-------
face_adjacency : scipy.sparse.csr_matrix
A CSR sparse matrix of shape (num_faces, num_faces),
containing 1s for adjacent faces (shared-edge adjacency)
plus dummy edges ensuring a single connected component.
"""
num_faces = len(face_list)
if num_faces == 0:
# Return an empty matrix if no faces
return csr_matrix((0, 0))
#--------------------------------------------------------------------------
# 1) Build adjacency based on shared edges.
# (Same logic as the original code, plus import statements.)
#--------------------------------------------------------------------------
edge_to_faces = defaultdict(list)
uf = UnionFind(num_faces)
for f_idx, (v0, v1, v2) in enumerate(face_list):
# Sort each edge’s endpoints so (i, j) == (j, i)
edges = [
tuple(sorted((v0, v1))),
tuple(sorted((v1, v2))),
tuple(sorted((v2, v0)))
]
for e in edges:
edge_to_faces[e].append(f_idx)
row = []
col = []
for edge, face_indices in edge_to_faces.items():
unique_faces = list(set(face_indices))
if len(unique_faces) > 1:
# For every pair of distinct faces that share this edge,
# mark them as mutually adjacent
for i in range(len(unique_faces)):
for j in range(i + 1, len(unique_faces)):
fi = unique_faces[i]
fj = unique_faces[j]
row.append(fi)
col.append(fj)
row.append(fj)
col.append(fi)
uf.union(fi, fj)
data = np.ones(len(row), dtype=np.int8)
face_adjacency = coo_matrix(
(data, (row, col)), shape=(num_faces, num_faces)
).tocsr()
#--------------------------------------------------------------------------
# 2) Check if the graph from shared edges is already connected.
#--------------------------------------------------------------------------
n_components = 0
for i in range(num_faces):
if uf.find(i) == i:
n_components += 1
print("n_components", n_components)
if n_components == 1:
# Already a single connected component, no need for dummy edges
return face_adjacency
#--------------------------------------------------------------------------
# 3) Compute centroids of each face for building a KNN graph.
#--------------------------------------------------------------------------
face_centroids = []
for (v0, v1, v2) in face_list:
centroid = (vertices[v0] + vertices[v1] + vertices[v2]) / 3.0
face_centroids.append(centroid)
face_centroids = np.array(face_centroids)
#--------------------------------------------------------------------------
# 4) Build a KNN graph (k=10) over face centroids using scikit‐learn
#--------------------------------------------------------------------------
knn = NearestNeighbors(n_neighbors=k, algorithm='auto')
knn.fit(face_centroids)
distances, indices = knn.kneighbors(face_centroids)
# 'distances[i]' are the distances from face i to each of its 'k' neighbors
# 'indices[i]' are the face indices of those neighbors
#--------------------------------------------------------------------------
# 5) Build a weighted graph in NetworkX using centroid-distances as edges
#--------------------------------------------------------------------------
G = nx.Graph()
# Add each face as a node in the graph
G.add_nodes_from(range(num_faces))
# For each face i, add edges (i -> j) for each neighbor j in the KNN
for i in range(num_faces):
for j, dist in zip(indices[i], distances[i]):
if i == j:
continue # skip self-loop
# Add an undirected edge with 'weight' = distance
# NetworkX handles parallel edges gracefully via last add_edge,
# but it typically overwrites the weight if (i, j) already exists.
G.add_edge(i, j, weight=dist)
#--------------------------------------------------------------------------
# 6) Compute MST on that KNN graph
#--------------------------------------------------------------------------
mst = nx.minimum_spanning_tree(G, weight='weight')
# Sort MST edges by ascending weight, so we add the shortest edges first
mst_edges_sorted = sorted(
mst.edges(data=True), key=lambda e: e[2]['weight']
)
print("mst edges sorted", len(mst_edges_sorted))
#--------------------------------------------------------------------------
# 7) Use a union-find structure to add MST edges only if they
# connect two currently disconnected components of the adjacency matrix
#--------------------------------------------------------------------------
# Convert face_adjacency to LIL format for efficient edge addition
adjacency_lil = face_adjacency.tolil()
# Now, step through MST edges in ascending order
for (u, v, attr) in mst_edges_sorted:
if uf.find(u) != uf.find(v):
# These belong to different components, so unify them
uf.union(u, v)
# And add a "dummy" edge to our adjacency matrix
adjacency_lil[u, v] = 1
adjacency_lil[v, u] = 1
# Convert back to CSR format and return
face_adjacency = adjacency_lil.tocsr()
if with_knn:
print("Adding KNN edges.")
### Add KNN edges graph too
dummy_row = []
dummy_col = []
for i in range(num_faces):
for j in indices[i]:
dummy_row.extend([i, j])
dummy_col.extend([j, i]) ### duplicates are handled by coo
dummy_data = np.ones(len(dummy_row), dtype=np.int16)
dummy_mat = coo_matrix(
(dummy_data, (dummy_row, dummy_col)),
shape=(num_faces, num_faces)
).tocsr()
face_adjacency = face_adjacency + dummy_mat
###########################
return face_adjacency
def construct_face_adjacency_matrix_naive(face_list):
"""
Given a list of faces (each face is a 3-tuple of vertex indices),
construct a face-based adjacency matrix of shape (num_faces, num_faces).
Two faces are adjacent if they share an edge.
If multiple connected components exist, dummy edges are added to
turn them into a single connected component. Edges are added naively by
randomly selecting a face and connecting consecutive components -- (comp_i, comp_i+1) ...
Parameters
----------
face_list : list of tuples
List of faces, each face is a tuple (v0, v1, v2) of vertex indices.
Returns
-------
face_adjacency : scipy.sparse.csr_matrix
A CSR sparse matrix of shape (num_faces, num_faces),
containing 1s for adjacent faces and 0s otherwise.
Additional edges are added if the faces are in multiple components.
"""
num_faces = len(face_list)
if num_faces == 0:
# Return an empty matrix if no faces
return csr_matrix((0, 0))
# Step 1: Map each undirected edge -> list of face indices that contain that edge
edge_to_faces = defaultdict(list)
# Populate the edge_to_faces dictionary
for f_idx, (v0, v1, v2) in enumerate(face_list):
# For an edge, we always store its endpoints in sorted order
# to avoid duplication (e.g. edge (2,5) is the same as (5,2)).
edges = [
tuple(sorted((v0, v1))),
tuple(sorted((v1, v2))),
tuple(sorted((v2, v0)))
]
for e in edges:
edge_to_faces[e].append(f_idx)
# Step 2: Build the adjacency (row, col) lists among faces
row = []
col = []
for e, faces_sharing_e in edge_to_faces.items():
# If an edge is shared by multiple faces, make each pair of those faces adjacent
f_indices = list(set(faces_sharing_e)) # unique face indices for this edge
if len(f_indices) > 1:
# For each pair of faces, mark them as adjacent
for i in range(len(f_indices)):
for j in range(i + 1, len(f_indices)):
f_i = f_indices[i]
f_j = f_indices[j]
row.append(f_i)
col.append(f_j)
row.append(f_j)
col.append(f_i)
# Create a COO matrix, then convert it to CSR
data = np.ones(len(row), dtype=np.int8)
face_adjacency = coo_matrix(
(data, (row, col)),
shape=(num_faces, num_faces)
).tocsr()
# Step 3: Ensure single connected component
# Use connected_components to see how many components exist
n_components, labels = connected_components(face_adjacency, directed=False)
if n_components > 1:
# We have multiple components; let's "connect" them via dummy edges
# The simplest approach is to pick one face from each component
# and connect them sequentially to enforce a single component.
component_representatives = []
for comp_id in range(n_components):
# indices of faces in this component
faces_in_comp = np.where(labels == comp_id)[0]
if len(faces_in_comp) > 0:
# take the first face in this component as a representative
component_representatives.append(faces_in_comp[0])
# Now, add edges between consecutive representatives
dummy_row = []
dummy_col = []
for i in range(len(component_representatives) - 1):
f_i = component_representatives[i]
f_j = component_representatives[i + 1]
dummy_row.extend([f_i, f_j])
dummy_col.extend([f_j, f_i])
if dummy_row:
dummy_data = np.ones(len(dummy_row), dtype=np.int8)
dummy_mat = coo_matrix(
(dummy_data, (dummy_row, dummy_col)),
shape=(num_faces, num_faces)
).tocsr()
face_adjacency = face_adjacency + dummy_mat
return face_adjacency
class UnionFind:
def __init__(self, n):
self.parent = list(range(n))
self.rank = [1] * n
def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x])
return self.parent[x]
def union(self, x, y):
rootX = self.find(x)
rootY = self.find(y)
if rootX != rootY:
if self.rank[rootX] > self.rank[rootY]:
self.parent[rootY] = rootX
elif self.rank[rootX] < self.rank[rootY]:
self.parent[rootX] = rootY
else:
self.parent[rootY] = rootX
self.rank[rootX] += 1
def hierarchical_clustering_labels(children, n_samples, max_cluster=20):
# Union-Find structure to maintain cluster merges
uf = UnionFind(2 * n_samples - 1) # We may need to store up to 2*n_samples - 1 clusters
current_cluster_count = n_samples
# Process merges from the children array
hierarchical_labels = []
for i, (child1, child2) in enumerate(children):
uf.union(child1, i + n_samples)
uf.union(child2, i + n_samples)
#uf.union(child1, child2)
current_cluster_count -= 1 # After each merge, we reduce the cluster count
if current_cluster_count <= max_cluster:
labels = [uf.find(i) for i in range(n_samples)]
hierarchical_labels.append(labels)
return hierarchical_labels
def load_ply_to_numpy(filename):
"""
Load a PLY file and extract the point cloud as a (N, 3) NumPy array.
Parameters:
filename (str): Path to the PLY file.
Returns:
numpy.ndarray: Point cloud array of shape (N, 3).
"""
# Read PLY file
ply_data = PlyData.read(filename)
# Extract vertex data
vertex_data = ply_data["vertex"]
# Convert to NumPy array (x, y, z)
points = np.vstack([vertex_data["x"], vertex_data["y"], vertex_data["z"]]).T
return points
def solve_clustering(input_fname, uid, view_id, save_dir="test_results1", out_render_fol= "test_render_clustering", use_agglo=False, max_num_clusters=18, is_pc=False, option=1, with_knn=True, export_mesh=True):
print(uid, view_id)
if not is_pc:
input_fname = f'{save_dir}/input_{uid}_{view_id}.ply'
mesh = load_mesh_util(input_fname)
else:
pc = load_ply_to_numpy(input_fname)
### Load inferred PartField features
try:
point_feat = np.load(f'{save_dir}/part_feat_{uid}_{view_id}.npy')
except:
try:
point_feat = np.load(f'{save_dir}/part_feat_{uid}_{view_id}_batch.npy')
except:
print()
print("pointfeat loading error. skipping...")
print(f'{save_dir}/part_feat_{uid}_{view_id}_batch.npy')
return
point_feat = point_feat / np.linalg.norm(point_feat, axis=-1, keepdims=True)
if not use_agglo:
for num_cluster in range(2, max_num_clusters):
clustering = KMeans(n_clusters=num_cluster, random_state=0).fit(point_feat)
labels = clustering.labels_
pred_labels = np.zeros((len(labels), 1))
for i, label in enumerate(np.unique(labels)):
# print(i, label)
pred_labels[labels == label] = i # Assign RGB values to each label
fname_clustering = os.path.join(out_render_fol, "cluster_out", str(uid) + "_" + str(view_id) + "_" + str(num_cluster).zfill(2))
np.save(fname_clustering, pred_labels)
if not is_pc:
V = mesh.vertices
F = mesh.faces
if export_mesh :
fname_mesh = os.path.join(out_render_fol, "ply", str(uid) + "_" + str(view_id) + "_" + str(num_cluster).zfill(2) + ".ply")
export_colored_mesh_ply(V, F, pred_labels, filename=fname_mesh)
else:
if export_mesh:
fname_pc = os.path.join(out_render_fol, "ply", str(uid) + "_" + str(view_id) + "_" + str(num_cluster).zfill(2) + ".ply")
export_pointcloud_with_labels_to_ply(pc, pred_labels, filename=fname_pc)
else:
if is_pc:
print("Not implemented error. Agglomerative clustering only for mesh inputs.")
exit()
if option == 0:
adj_matrix = construct_face_adjacency_matrix_naive(mesh.faces)
elif option == 1:
adj_matrix = construct_face_adjacency_matrix_facemst(mesh.faces, mesh.vertices, with_knn=with_knn)
else:
adj_matrix = construct_face_adjacency_matrix_ccmst(mesh.faces, mesh.vertices, with_knn=with_knn)
clustering = AgglomerativeClustering(connectivity=adj_matrix,
n_clusters=1,
).fit(point_feat)
hierarchical_labels = hierarchical_clustering_labels(clustering.children_, point_feat.shape[0], max_cluster=max_num_clusters)
all_FL = []
for n_cluster in range(max_num_clusters):
print("Processing cluster: "+str(n_cluster))
labels = hierarchical_labels[n_cluster]
all_FL.append(labels)
all_FL = np.array(all_FL)
unique_labels = np.unique(all_FL)
for n_cluster in range(max_num_clusters):
FL = all_FL[n_cluster]
relabel = np.zeros((len(FL), 1))
for i, label in enumerate(unique_labels):
relabel[FL == label] = i # Assign RGB values to each label
V = mesh.vertices
F = mesh.faces
if export_mesh :
fname_mesh = os.path.join(out_render_fol, "ply", str(uid) + "_" + str(view_id) + "_" + str(max_num_clusters - n_cluster).zfill(2) + ".ply")
export_colored_mesh_ply(V, F, FL, filename=fname_mesh)
fname_clustering = os.path.join(out_render_fol, "cluster_out", str(uid) + "_" + str(view_id) + "_" + str(max_num_clusters - n_cluster).zfill(2))
np.save(fname_clustering, FL)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--source_dir', default= "", type=str)
parser.add_argument('--root', default= "", type=str)
parser.add_argument('--dump_dir', default= "", type=str)
parser.add_argument('--max_num_clusters', default= 20, type=int)
parser.add_argument('--use_agglo', default= False, type=bool)
parser.add_argument('--is_pc', default= False, type=bool)
parser.add_argument('--option', default= 1, type=int)
parser.add_argument('--with_knn', default= False, type=bool)
parser.add_argument('--export_mesh', default= True, type=bool)
FLAGS = parser.parse_args()
root = FLAGS.root
OUTPUT_FOL = FLAGS.dump_dir
SOURCE_DIR = FLAGS.source_dir
MAX_NUM_CLUSTERS = FLAGS.max_num_clusters
USE_AGGLO = FLAGS.use_agglo
IS_PC = FLAGS.is_pc
OPTION = FLAGS.option
WITH_KNN = FLAGS.with_knn
EXPORT_MESH = FLAGS.export_mesh
models = os.listdir(root)
os.makedirs(OUTPUT_FOL, exist_ok=True)
cluster_fol = os.path.join(OUTPUT_FOL, "cluster_out")
os.makedirs(cluster_fol, exist_ok=True)
if EXPORT_MESH:
ply_fol = os.path.join(OUTPUT_FOL, "ply")
os.makedirs(ply_fol, exist_ok=True)
#### Get existing model_ids ###
all_files = os.listdir(os.path.join(OUTPUT_FOL, "ply"))
existing_model_ids = []
for sample in all_files:
uid = sample.split("_")[0]
view_id = sample.split("_")[1]
# sample_name = str(uid) + "_" + str(view_id)
sample_name = str(uid)
if sample_name not in existing_model_ids:
existing_model_ids.append(sample_name)
##############################
all_files = os.listdir(SOURCE_DIR)
selected = []
for f in all_files:
if ".ply" in f and IS_PC and f.split(".")[0] not in existing_model_ids:
selected.append(f)
elif (".obj" in f or ".glb" in f) and not IS_PC and f.split(".")[0] not in existing_model_ids:
selected.append(f)
print("Number of models to process: " + str(len(selected)))
for model in selected:
fname = os.path.join(SOURCE_DIR, model)
uid = model.split(".")[-2]
view_id = 0
solve_clustering(fname, uid, view_id, save_dir=root, out_render_fol= OUTPUT_FOL, use_agglo=USE_AGGLO, max_num_clusters=MAX_NUM_CLUSTERS, is_pc=IS_PC, option=OPTION, with_knn=WITH_KNN, export_mesh=EXPORT_MESH)
|