import os, sys import numpy as np import torch import trimesh import json sys.path.append("..") sys.path.append("../third_party/SmoothFunctionalMaps") sys.path.append("../third_party/SmoothFunctionalMaps/pyFM") from partfield.config import default_argument_parser, setup from pyFM.mesh import TriMesh from pyFM.spectral import mesh_FM_to_p2p import DiscreteOpt def vertex_color_map(vertices): min_coord, max_coord = np.min(vertices, axis=0, keepdims=True), np.max(vertices, axis=0, keepdims=True) cmap = (vertices - min_coord) / (max_coord - min_coord) return cmap if __name__ == '__main__': parser = default_argument_parser() args = parser.parse_args() cfg = setup(args, freeze=False) feature_dir = os.path.join("../exp_results", cfg.result_name) all_files = cfg.dataset.all_files assert len(all_files) % 2 == 0 num_pairs = len(all_files) // 2 device = "cuda" output_dir = "../exp_results/correspondence/" os.makedirs(output_dir, exist_ok=True) for i in range(num_pairs): file0 = all_files[2 * i] file1 = all_files[2 * i + 1] uid0 = file0.split(".")[-2].replace("/", "_") uid1 = file1.split(".")[-2].replace("/", "_") mesh0 = trimesh.load(os.path.join(feature_dir, f"input_{uid0}_0.ply"), process=True) mesh1 = trimesh.load(os.path.join(feature_dir, f"input_{uid1}_0.ply"), process=True) feat0 = np.load(os.path.join(feature_dir, f"part_feat_{uid0}_0_batch.npy")) feat1 = np.load(os.path.join(feature_dir, f"part_feat_{uid1}_0_batch.npy")) assert mesh0.vertices.shape[0] == feat0.shape[0], "num of vertices should match num of features" assert mesh1.vertices.shape[0] == feat1.shape[0], "num of vertices should match num of features" th_descr0 = torch.tensor(feat0, device=device, dtype=torch.float32) th_descr1 = torch.tensor(feat1, device=device, dtype=torch.float32) cdist_01 = torch.cdist(th_descr0, th_descr1, p=2) p2p_10_init = cdist_01.argmin(dim=0).cpu().numpy() p2p_01_init = cdist_01.argmin(dim=1).cpu().numpy() fm_mesh0 = TriMesh(mesh0.vertices, mesh0.faces, area_normalize=True, center=True).process(k=200, intrinsic=True) fm_mesh1 = TriMesh(mesh1.vertices, mesh1.faces, area_normalize=True, center=True).process(k=200, intrinsic=True) model = DiscreteOpt.SmoothDiscreteOptimization(fm_mesh0, fm_mesh1) model.set_params("zoomout_rhm") model.opt_params.step = 10 model.solve_from_p2p(p2p_21=p2p_10_init, p2p_12=p2p_01_init, n_jobs=30, verbose=True) p2p_10_FM = mesh_FM_to_p2p(model.FM_12, fm_mesh0, fm_mesh1, use_adj=True) color0 = vertex_color_map(mesh0.vertices) color1 = color0[p2p_10_FM] output_mesh0 = trimesh.Trimesh(mesh0.vertices, mesh0.faces, vertex_colors=color0) output_mesh1 = trimesh.Trimesh(mesh1.vertices, mesh1.faces, vertex_colors=color1) output_mesh0.export(os.path.join(output_dir, f"correspondence_{uid0}_{uid1}_0.ply")) output_mesh1.export(os.path.join(output_dir, f"correspondence_{uid0}_{uid1}_1.ply"))