import torch import torch.nn as nn import torch.nn.functional as F import clip import math from functools import partial from timm.models.vision_transformer import Attention from models.ROPE import RopeND from utils.eval_utils import eval_decorator from utils.train_utils import lengths_to_mask from diffusions.diffusion import create_diffusion from diffusions.transport import create_transport, Sampler ################################################################################# # ACMDM # ################################################################################# class ACMDM(nn.Module): def __init__(self, input_dim, cond_mode, latent_dim=256, ff_size=1024, num_layers=8, num_heads=4, dropout=0, clip_dim=512, diff_model='Flow', cond_drop_prob=0.1, max_length=49, patch_size=(1, 22), stride_size=(1, 22), num_joint=22, cluster=5, clip_version='ViT-B/32', **kargs): super(ACMDM, self).__init__() self.input_dim = input_dim self.latent_dim = latent_dim self.clip_dim = clip_dim self.dropout = dropout self.cluster = cluster self.cond_mode = cond_mode self.cond_drop_prob = cond_drop_prob if self.cond_mode == 'action': assert 'num_actions' in kargs self.num_actions = kargs.get('num_actions', 1) self.encode_action = partial(F.one_hot, num_classes=self.num_actions) # -------------------------------------------------------------------------- # Diffusion self.diff_model = diff_model if self.diff_model == 'Flow': self.train_diffusion = create_transport() # default to linear, velocity prediction self.gen_diffusion = Sampler(self.train_diffusion) else: self.train_diffusion = create_diffusion(timestep_respacing="", noise_schedule="linear") self.gen_diffusion = create_diffusion(timestep_respacing="", noise_schedule="linear") # -------------------------------------------------------------------------- # ACMDM print('Loading ACMDM...') self.t_embedder = TimestepEmbedder(self.latent_dim) self.patch_size = patch_size self.stride_size = stride_size self.patches_per_frame = (num_joint - patch_size[1]) // stride_size[1] + 1 # Patchification self.x_embedder = nn.Linear(self.input_dim*self.patch_size[0]*self.patch_size[1], self.latent_dim, bias=True) # Positional Encoding max_length = max_length * self.patches_per_frame self.max_lens = [max_length] self.rope = RopeND(nd=1, nd_split=[1], max_lens=self.max_lens) self.position_ids_precompute = torch.arange(max_length).unsqueeze(0) self.cluster_patches = max_length // self.cluster self.ACMDMTransformer = nn.ModuleList([ ACMDMTransBlock(self.latent_dim, num_heads, mlp_size=ff_size, rope=self.rope, qk_norm=True) for _ in range(num_layers) ]) if self.cond_mode == 'text': self.y_embedder = nn.Linear(self.clip_dim, self.latent_dim) elif self.cond_mode == 'action': self.y_embedder = nn.Linear(self.num_actions, self.latent_dim) elif self.cond_mode == 'uncond': self.y_embedder = nn.Identity() else: raise KeyError("Unsupported condition mode!!!") self.final_layer = FinalLayer(self.latent_dim, self.input_dim*self.patch_size[0]*self.patch_size[1]) self.initialize_weights() if self.cond_mode == 'text': print('Loading CLIP...') self.clip_version = clip_version self.clip_model = self.load_and_freeze_clip(clip_version) attention_mask = [] start = 0 total_length = max_length for idx in range(max_length): if idx in [self.cluster_patches * i for i in range(self.cluster)]: start += self.cluster_patches * self.patches_per_frame attention_mask.append(torch.cat([torch.ones((1, start)), torch.zeros((1, total_length - start))], dim=-1)) attention_mask = torch.cat(attention_mask, dim=0) attention_mask = torch.where(attention_mask == 0, -torch.inf, attention_mask) attention_mask = torch.where(attention_mask == 1, 0, attention_mask) attention_mask = attention_mask.unsqueeze(0).unsqueeze(0) self.register_buffer('attention_mask', attention_mask.contiguous()) def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in ACMDM blocks: for block in self.ACMDMTransformer: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0) def load_and_freeze_clip(self, clip_version): clip_model, clip_preprocess = clip.load(clip_version, device='cpu', jit=False) assert torch.cuda.is_available() clip.model.convert_weights(clip_model) clip_model.eval() for p in clip_model.parameters(): p.requires_grad = False return clip_model def encode_text(self, raw_text): device = next(self.parameters()).device text = clip.tokenize(raw_text, truncate=True).to(device) feat_clip_text = self.clip_model.encode_text(text).float() return feat_clip_text def mask_cond(self, cond, force_mask=False): bs, d = cond.shape if force_mask: return torch.zeros_like(cond) elif self.training and self.cond_drop_prob > 0.: mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_drop_prob).view(bs, 1) return cond * (1. - mask) else: return cond def patchify(self, x): b, c, l, j = x.shape p = self.patch_size[0] q = self.patch_size[1] l_, j_ = l // p, j // q x = x.reshape(b, c, l_, p, j_, q) x = torch.einsum('nclpjq->nljcpq', x) x = x.reshape(b, l_ * j_, c * p *q) return x def patchify_mask(self, mask): b, l = mask.shape p = self.patch_size[0] l_ = l//self.patch_size[0] q = self.patch_size[1] j_ = self.patches_per_frame mask = mask.unsqueeze(1).unsqueeze(-1).expand(-1, self.input_dim, -1, j_*q) mask = mask.reshape(b, self.input_dim, l_, p, j_, q) mask = torch.einsum('nclpjq->nljcpq', mask) mask = mask.reshape(b, l_ * j_, self.input_dim*p * q) mask = mask.any(dim=-1) return mask def unpatchify(self, x): b = x.shape[0] p = self.patch_size[0] q = self.patch_size[1] c = self.input_dim l_, j_ = x.shape[1]//self.patches_per_frame, self.patches_per_frame x = x.reshape(b, l_, j_, c, p, q) x = torch.einsum('nljcpq->nclpjq', x) x = x.reshape(b, c, l_ * p, j_ * q) return x def forward(self, x, t, conds, attention_mask, force_mask=False, ids=None, block_size=None, cache=False): t = self.t_embedder(t, dtype=x.dtype).unsqueeze(1).repeat(1, self.cluster_patches * self.patches_per_frame, 1) t = t.chunk(self.cluster, dim=0) t = torch.cat(t, dim=1) conds = self.mask_cond(conds, force_mask=force_mask) x = x.chunk(self.cluster, dim=0) x = torch.cat(x, dim=1) x = self.x_embedder(x) conds = self.y_embedder(conds) y = t + conds.unsqueeze(1) if ids is not None: position_ids = ids else: position_ids = self.position_ids_precompute[:, :x.shape[1]] for block in self.ACMDMTransformer: x = block(x, y, attention_mask, position_ids=position_ids, block_size=block_size, cache=cache) x = self.final_layer(x, y) x = x.chunk(self.cluster, dim=1) x = torch.cat(x, dim=0) return x def forward_with_CFG(self, x, t, conds, attention_mask, cfg=1.0, context=None, cache=True, block_id=0): if cache: if self.ACMDMTransformer[0].attn.cached_k is None: cache = True elif block_id * self.cluster_patches == self.ACMDMTransformer[0].attn.cached_k.shape[2]: cache = False if not cfg == 1.0: half = x[: len(x) // 2] x = torch.cat([half, half], dim=0) if context is not None and cache: ids = self.position_ids_precompute[:, (block_id - 1) * self.cluster_patches * self.patches_per_frame:(block_id + 1) * self.cluster_patches * self.patches_per_frame] x = torch.cat([context, x], dim=1) t = torch.cat([torch.ones_like(t).unsqueeze(-1).repeat(1, self.patches_per_frame * self.cluster_patches), t.unsqueeze(-1).repeat(1, self.patches_per_frame * self.cluster_patches)], dim=1) am_idx = block_id if block_id == 0 else block_id - 1 attention_mask = attention_mask[:, :, am_idx * self.cluster_patches * self.patches_per_frame: (block_id + 1) * self.cluster_patches * self.patches_per_frame, :(block_id + 1) * self.cluster_patches * self.patches_per_frame] else: ids = self.position_ids_precompute[:, (block_id) * self.cluster_patches * self.patches_per_frame:(block_id + 1) * self.cluster_patches * self.patches_per_frame] t = t.unsqueeze(-1).repeat(1, self.patches_per_frame * self.cluster_patches) attention_mask = attention_mask[:, :, :(block_id + 1) * self.cluster_patches * self.patches_per_frame, :(block_id + 1) * self.cluster_patches * self.patches_per_frame] attention_mask = attention_mask[:, :, -self.patches_per_frame * self.cluster_patches:, :] t = t.reshape(-1) t = self.t_embedder(t, dtype=x.dtype) t = t.reshape(x.shape[0], x.shape[1], -1) conds = self.mask_cond(conds) x = self.x_embedder(x) conds = self.y_embedder(conds) y = t + conds.unsqueeze(1) position_ids = ids for block in self.ACMDMTransformer: x = block(x, y, attention_mask, position_ids=position_ids, block_size=self.patches_per_frame * self.cluster_patches, cache=cache) x = self.final_layer(x, y) x = x[:, -self.patches_per_frame * self.cluster_patches:, :] if not cfg == 1.0: cond_eps, uncond_eps = torch.split(x, len(x) // 2, dim=0) half_eps = uncond_eps + cfg * (cond_eps - uncond_eps) x = torch.cat([half_eps, half_eps], dim=0) return x def forward_loss(self, latents, y, m_lens): b, d, l, j = latents.shape device = latents.device non_pad_mask = lengths_to_mask(m_lens, l) non_pad_mask = self.patchify_mask(non_pad_mask) latents = self.patchify(latents) b, l, d = latents.shape latents = torch.where(non_pad_mask.unsqueeze(-1), latents, torch.zeros_like(latents)) target = latents.clone().detach().chunk(self.cluster, dim=1) target = torch.cat(target, dim=0) force_mask = False if self.cond_mode == 'text': with torch.no_grad(): cond_vector = self.encode_text(y) elif self.cond_mode == 'action': cond_vector = self.enc_action(y).to(device).float() elif self.cond_mode == 'uncond': cond_vector = torch.zeros(b, self.latent_dim).float().to(device) force_mask = True else: raise NotImplementedError("Unsupported condition mode!!!") attention_mask = [] for i in range(b): a_mask = self.attention_mask.clone() a_mask[:, :, :, m_lens[i] * self.patches_per_frame:] = -torch.inf attention_mask.append(a_mask) attention_mask = torch.cat(attention_mask) model_kwargs = dict(conds=cond_vector, force_mask=force_mask, attention_mask=attention_mask) if self.diff_model == "Flow": loss_dict = self.train_diffusion.training_losses(self.forward, target, model_kwargs, dim=(2)) else: t = torch.randint(0, self.train_diffusion.num_timesteps, (target.shape[0],), device=target.device) loss_dict = self.train_diffusion.training_losses(self.forward, target, t, model_kwargs) loss = loss_dict["loss"] loss = loss.chunk(self.cluster, dim=0) loss = torch.cat(loss, dim=1) loss = (loss * non_pad_mask).sum() / non_pad_mask.sum() return loss @torch.no_grad() @eval_decorator def generate(self, conds, m_lens, cond_scale: int, temperature=1, ): device = next(self.parameters()).device l = max(m_lens) b = len(m_lens) if self.cond_mode == 'text': with torch.no_grad(): cond_vector = self.encode_text(conds) elif self.cond_mode == 'action': cond_vector = self.enc_action(conds).to(device) elif self.cond_mode == 'uncond': cond_vector = torch.zeros(b, self.latent_dim).float().to(device) else: raise NotImplementedError("Unsupported condition mode!!!") padding_mask = ~lengths_to_mask(m_lens, l) if not cond_scale == 1.0: cond_vector = torch.cat([cond_vector, torch.zeros_like(cond_vector)], dim=0) for block in self.ACMDMTransformer: block.set_caching(True) output = [] attention_mask = [] for i in range(b): a_mask = self.attention_mask.clone() a_mask[:, :, :, m_lens[i] * self.patches_per_frame:] = -torch.inf attention_mask.append(a_mask) attention_mask = torch.cat(attention_mask) if not cond_scale == 1.0: attention_mask = torch.cat([attention_mask, attention_mask], dim=0) for step in range(self.cluster): clean_x = output[-1] if len(output) > 0 else None cache_flag = step > 0 noise = torch.randn(b, self.cluster_patches * self.patches_per_frame, self.input_dim * self.patch_size[0] * self.patch_size[1]).to(device) if not cond_scale == 1.0: noise = torch.cat([noise, noise], dim=0) if clean_x is not None: clean_x = torch.cat([clean_x, clean_x], dim=0) # cfg scale # cond_scale2 = (cond_scale - 1) * (step+1) / (m_lens//self.cluster_patches + 1) + 1 model_kwargs = dict(conds=cond_vector, context=clean_x, block_id=step, cache=cache_flag, attention_mask=attention_mask, cfg=cond_scale) sample_fn = self.forward_with_CFG if self.diff_model == "Flow": model_fn = self.gen_diffusion.sample_ode() # default to ode sampling sampled_token_latent = model_fn(noise, sample_fn, **model_kwargs)[-1] else: sampled_token_latent = self.gen_diffusion.p_sample_loop( sample_fn, noise.shape, noise, clip_denoised=False, model_kwargs=model_kwargs, progress=False, temperature=temperature ) if not cond_scale == 1: sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0) output.append(sampled_token_latent.detach().clone()) latents = torch.cat(output, dim=1) latents = self.unpatchify(latents[:, :l * self.patches_per_frame, :]) latents = torch.where(padding_mask.unsqueeze(1).unsqueeze(-1), torch.zeros_like(latents), latents) for block in self.ACMDMTransformer: block.set_caching(False) return latents ################################################################################# # ACMDM Zoos # ################################################################################# def acmdm_noisyprefixar_flow_s_ps22(**kwargs): layer = 8 return ACMDM(latent_dim=layer*64, ff_size=layer*64*4, num_layers=layer, num_heads=layer, dropout=0, clip_dim=512, diff_model="Flow", cond_drop_prob=0.1, max_length=50, patch_size=(1, 22), stride_size=(1, 22), **kwargs) ACMDM_models = { 'ACMDM-NoisyPrefixAR-Flow-S-PatchSize22': acmdm_noisyprefixar_flow_s_ps22, } ################################################################################# # Inner Architectures # ################################################################################# def modulate(x, shift, scale): return x * (1 + scale) + shift class ACMDMAttention(Attention): def __init__( self, dim, num_heads=8, qkv_bias=True, rope=None, qk_norm=True, **block_kwargs, ): super().__init__(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, **block_kwargs) self.caching, self.cached_k, self.cached_v = False, None, None self.rope = rope def set_caching(self, flag): self.caching, self.cached_k, self.cached_v = flag, None, None def forward(self, x, position_ids=None, attention_mask=None, block_size=None, cache=False): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) if self.rope is not None: q, k = self.rope(q, k, position_ids) if self.caching: if cache: if self.cached_k is None: self.cached_k = k[:, :, :block_size, :] self.cached_v = v[:, :, :block_size, :] self.cached_x = x else: self.cached_k = torch.cat((self.cached_k, k[:, :, :block_size, :]), dim=2) self.cached_v = torch.cat((self.cached_v, v[:, :, :block_size, :]), dim=2) if self.cached_k is not None: k = torch.cat((self.cached_k, k[:, :, -block_size:, :]), dim=2) v = torch.cat((self.cached_v, v[:, :, -block_size:, :]), dim=2) x = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attention_mask, dropout_p=self.attn_drop.p ) x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class SwiGLUFFN(nn.Module): def __init__( self, in_features: int, hidden_features, bias: bool = True, ) -> None: super().__init__() out_features = in_features hidden_features = hidden_features self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias) self.w3 = nn.Linear(hidden_features, out_features, bias=bias) def forward(self, x): x12 = self.w12(x) x1, x2 = x12.chunk(2, dim=-1) hidden = F.silu(x1) * x2 return self.w3(hidden) class ACMDMTransBlock(nn.Module): def __init__(self, hidden_size, num_heads, mlp_size=1024, rope=None, qk_norm=True): super().__init__() self.norm1 = LlamaRMSNorm(hidden_size, eps=1e-6) self.attn = ACMDMAttention(hidden_size, num_heads=num_heads, qkv_bias=True, norm_layer=LlamaRMSNorm, qk_norm=qk_norm, rope=rope) self.norm2 = LlamaRMSNorm(hidden_size, eps=1e-6) self.mlp = SwiGLUFFN(hidden_size, int(2 / 3 * mlp_size)) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True) ) def set_caching(self, flag): self.attn.set_caching(flag) def forward(self, x, c, attention_mask=None, position_ids=None, block_size=None, cache=False): dtype = x.dtype shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=-1) norm_x1 = self.norm1(x.to(torch.float32)).to(dtype) attn_input_x = modulate(norm_x1, shift_msa, scale_msa) attn_output_x = self.attn(attn_input_x, attention_mask=attention_mask, position_ids=position_ids, block_size=block_size, cache=cache) x = x + gate_msa * attn_output_x norm_x2 = self.norm2(x.to(torch.float32)).to(dtype) gate_input_x = modulate(norm_x2, shift_mlp, scale_mlp) gate_output_x = self.mlp(gate_input_x) x = x + gate_mlp * gate_output_x return x class FinalLayer(nn.Module): def __init__(self, hidden_size, output_size): super().__init__() self.norm_final = LlamaRMSNorm(hidden_size, eps=1e-6) self.linear = nn.Linear(hidden_size, output_size, bias=True) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True) ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) norm_x = self.norm_final(x.to(torch.float32)).to(x.dtype) x = modulate(norm_x, shift, scale) x = self.linear(x) return x class TimestepEmbedder(nn.Module): def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000, dtype=torch.float32): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=dtype) / half ).to(device=t.device, dtype=dtype) args = t[:, None] * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t, dtype=torch.bfloat16): t_freq = self.timestep_embedding(t, self.frequency_embedding_size, dtype=dtype) t_emb = self.mlp(t_freq) return t_emb class LlamaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return (self.weight * hidden_states).to(input_dtype)