Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
HTML_UI = """
|
| 2 |
<!DOCTYPE html>
|
| 3 |
<html lang="en">
|
|
@@ -591,3 +988,17 @@ HTML_UI = """
|
|
| 591 |
</body>
|
| 592 |
</html>
|
| 593 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import tempfile
|
| 4 |
+
from typing import List, Literal, Optional
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import pyzipper
|
| 8 |
+
import soundfile as sf # noqa: F401 (ensure audio backend is available)
|
| 9 |
+
|
| 10 |
+
from docx import Document
|
| 11 |
+
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
|
| 12 |
+
from fastapi.responses import (
|
| 13 |
+
FileResponse,
|
| 14 |
+
JSONResponse,
|
| 15 |
+
PlainTextResponse,
|
| 16 |
+
HTMLResponse,
|
| 17 |
+
)
|
| 18 |
+
from pydantic import BaseModel
|
| 19 |
+
from transformers import pipeline
|
| 20 |
+
import spaces
|
| 21 |
+
|
| 22 |
+
# ===================== CONFIG =====================
|
| 23 |
+
|
| 24 |
+
MODEL_NAME = "openai/whisper-large-v3"
|
| 25 |
+
|
| 26 |
+
AUDIO_EXTENSIONS = (
|
| 27 |
+
".wav",
|
| 28 |
+
".mp3",
|
| 29 |
+
".m4a",
|
| 30 |
+
".flac",
|
| 31 |
+
".ogg",
|
| 32 |
+
".opus",
|
| 33 |
+
".webm",
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# Use GPU if available on the Space
|
| 37 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
| 38 |
+
|
| 39 |
+
# Lazy-loaded pipeline (created on first request)
|
| 40 |
+
asr_pipe = None
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def get_pipeline():
|
| 44 |
+
global asr_pipe
|
| 45 |
+
if asr_pipe is None:
|
| 46 |
+
asr_pipe = pipeline(
|
| 47 |
+
task="automatic-speech-recognition",
|
| 48 |
+
model=MODEL_NAME,
|
| 49 |
+
chunk_length_s=30,
|
| 50 |
+
device=device,
|
| 51 |
+
)
|
| 52 |
+
return asr_pipe
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# ===================== Pydantic models =====================
|
| 56 |
+
|
| 57 |
+
class FileTranscript(BaseModel):
|
| 58 |
+
filename: str
|
| 59 |
+
text: str
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class TranscriptionResponse(BaseModel):
|
| 63 |
+
mode: Literal["general", "medical_en"]
|
| 64 |
+
combined_transcript: str
|
| 65 |
+
items: List[FileTranscript]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# ===================== Helper functions =====================
|
| 69 |
+
|
| 70 |
+
def build_generate_kwargs(mode: str):
|
| 71 |
+
"""
|
| 72 |
+
mode: 'general' | 'medical_en'
|
| 73 |
+
Always transcribe with auto language detection,
|
| 74 |
+
but in medical_en we bias towards English medical dictation.
|
| 75 |
+
"""
|
| 76 |
+
generate_kwargs = {
|
| 77 |
+
"task": "transcribe", # keep same language as audio
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
if mode == "medical_en":
|
| 81 |
+
# Strong bias towards English medical terminology
|
| 82 |
+
generate_kwargs["language"] = "en"
|
| 83 |
+
generate_kwargs["initial_prompt"] = (
|
| 84 |
+
"This is a medical dictation. Use accurate English medical terminology, "
|
| 85 |
+
"including anatomy, diseases, investigations, lab values, imaging, and drugs. "
|
| 86 |
+
"Keep the style clinical and professional."
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
return generate_kwargs
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def filter_audio_files(paths: List[str]) -> List[str]:
|
| 93 |
+
out: List[str] = []
|
| 94 |
+
for p in paths:
|
| 95 |
+
_, ext = os.path.splitext(p)
|
| 96 |
+
if ext.lower() in AUDIO_EXTENSIONS:
|
| 97 |
+
out.append(p)
|
| 98 |
+
return out
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def transcribe_file(path: str, mode: str) -> str:
|
| 102 |
+
pipe = get_pipeline()
|
| 103 |
+
generate_kwargs = build_generate_kwargs(mode)
|
| 104 |
+
|
| 105 |
+
result = pipe(
|
| 106 |
+
path,
|
| 107 |
+
batch_size=8,
|
| 108 |
+
generate_kwargs=generate_kwargs,
|
| 109 |
+
return_timestamps=False,
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
if isinstance(result, dict):
|
| 113 |
+
return (result.get("text") or "").strip()
|
| 114 |
+
if isinstance(result, list) and result:
|
| 115 |
+
return (result[0].get("text") or "").strip()
|
| 116 |
+
return ""
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def format_combined(results: List[FileTranscript]) -> str:
|
| 120 |
+
parts: List[str] = []
|
| 121 |
+
for idx, item in enumerate(results, start=1):
|
| 122 |
+
parts.append(f"### File {idx}: {item.filename}")
|
| 123 |
+
parts.append("")
|
| 124 |
+
parts.append(item.text if item.text else "[No transcript]")
|
| 125 |
+
parts.append("")
|
| 126 |
+
return "\n".join(parts).strip()
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def build_docx(results: List[FileTranscript], title: str) -> str:
|
| 130 |
+
doc = Document()
|
| 131 |
+
doc.add_heading(title, level=1)
|
| 132 |
+
|
| 133 |
+
for idx, item in enumerate(results, start=1):
|
| 134 |
+
doc.add_heading(f"File {idx}: {item.filename}", level=2)
|
| 135 |
+
doc.add_paragraph(item.text if item.text else "[No transcript]")
|
| 136 |
+
doc.add_paragraph()
|
| 137 |
+
|
| 138 |
+
tmpdir = tempfile.mkdtemp(prefix="docx_")
|
| 139 |
+
out_path = os.path.join(tmpdir, "transcripts.docx")
|
| 140 |
+
doc.save(out_path)
|
| 141 |
+
return out_path
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def save_uploads_to_temp(files: List[UploadFile]) -> List[str]:
|
| 145 |
+
tmpdir = tempfile.mkdtemp(prefix="uploads_")
|
| 146 |
+
local_paths: List[str] = []
|
| 147 |
+
for uf in files:
|
| 148 |
+
filename = os.path.basename(uf.filename or "audio")
|
| 149 |
+
local_path = os.path.join(tmpdir, filename)
|
| 150 |
+
with open(local_path, "wb") as out_f:
|
| 151 |
+
shutil.copyfileobj(uf.file, out_f)
|
| 152 |
+
local_paths.append(local_path)
|
| 153 |
+
return local_paths
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def extract_zip_to_temp(zip_file: UploadFile, password: Optional[str]) -> List[str]:
|
| 157 |
+
tmpdir = tempfile.mkdtemp(prefix="zip_")
|
| 158 |
+
zip_path = os.path.join(tmpdir, os.path.basename(zip_file.filename or "archive.zip"))
|
| 159 |
+
|
| 160 |
+
# Save uploaded ZIP
|
| 161 |
+
with open(zip_path, "wb") as out_f:
|
| 162 |
+
shutil.copyfileobj(zip_file.file, out_f)
|
| 163 |
+
|
| 164 |
+
outdir = tempfile.mkdtemp(prefix="zip_files_")
|
| 165 |
+
|
| 166 |
+
try:
|
| 167 |
+
with pyzipper.AESZipFile(zip_path, "r") as zf:
|
| 168 |
+
if password:
|
| 169 |
+
zf.setpassword(password.encode("utf-8"))
|
| 170 |
+
|
| 171 |
+
for info in zf.infolist():
|
| 172 |
+
if info.is_dir():
|
| 173 |
+
continue
|
| 174 |
+
name = os.path.basename(info.filename)
|
| 175 |
+
if not name:
|
| 176 |
+
continue
|
| 177 |
+
out_path = os.path.join(outdir, name)
|
| 178 |
+
os.makedirs(os.path.dirname(out_path), exist_ok=True)
|
| 179 |
+
with zf.open(info) as src, open(out_path, "wb") as dst:
|
| 180 |
+
shutil.copyfileobj(src, dst)
|
| 181 |
+
|
| 182 |
+
except (pyzipper.BadZipFile, RuntimeError, KeyError) as e:
|
| 183 |
+
shutil.rmtree(outdir, ignore_errors=True)
|
| 184 |
+
raise HTTPException(
|
| 185 |
+
status_code=400,
|
| 186 |
+
detail=f"Failed to open ZIP file. Check password / integrity. {e}",
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
files = [os.path.join(outdir, f) for f in os.listdir(outdir)]
|
| 190 |
+
return files
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
# ===================== FastAPI app =====================
|
| 194 |
+
|
| 195 |
+
app = FastAPI(
|
| 196 |
+
title="Whisper Large V3 – Medical Batch Transcription API",
|
| 197 |
+
description="""
|
| 198 |
+
HTTP API for Whisper Large V3 with:
|
| 199 |
+
|
| 200 |
+
- Multi-file audio upload
|
| 201 |
+
- Password-protected ZIP upload
|
| 202 |
+
- Medical-biased transcription mode
|
| 203 |
+
- Combined transcript
|
| 204 |
+
- Optional merged Word (.docx) download
|
| 205 |
+
|
| 206 |
+
Use `/docs` for Swagger UI and `/ui` for the web interface.
|
| 207 |
+
""",
|
| 208 |
+
version="1.0.0",
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
@app.get("/", response_class=PlainTextResponse)
|
| 213 |
+
def root():
|
| 214 |
+
return (
|
| 215 |
+
"Whisper Large V3 – Medical Batch Transcription API\n"
|
| 216 |
+
"Open /docs for API documentation or /ui for the web interface.\n"
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
@app.get("/health", response_class=PlainTextResponse)
|
| 221 |
+
def health():
|
| 222 |
+
return "OK"
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
@app.get("/self-test")
|
| 226 |
+
def self_test():
|
| 227 |
+
"""
|
| 228 |
+
Basic self-check:
|
| 229 |
+
- can we create/load the pipeline?
|
| 230 |
+
- what device are we using?
|
| 231 |
+
"""
|
| 232 |
+
try:
|
| 233 |
+
pipe = get_pipeline()
|
| 234 |
+
model_name = getattr(pipe.model, "name_or_path", MODEL_NAME)
|
| 235 |
+
dev = "cuda" if device == 0 else str(device)
|
| 236 |
+
return JSONResponse(
|
| 237 |
+
{
|
| 238 |
+
"status": "ok",
|
| 239 |
+
"message": "Pipeline loaded successfully.",
|
| 240 |
+
"model": model_name,
|
| 241 |
+
"device": dev,
|
| 242 |
+
}
|
| 243 |
+
)
|
| 244 |
+
except Exception as e:
|
| 245 |
+
return JSONResponse(
|
| 246 |
+
{
|
| 247 |
+
"status": "error",
|
| 248 |
+
"message": f"Pipeline failed to load: {e}",
|
| 249 |
+
},
|
| 250 |
+
status_code=500,
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
# ---------- 1. Multi-file transcription (JSON) ----------
|
| 255 |
+
|
| 256 |
+
@app.post("/api/transcribe/files", response_model=TranscriptionResponse)
|
| 257 |
+
@spaces.GPU
|
| 258 |
+
def transcribe_files(
|
| 259 |
+
files: List[UploadFile] = File(..., description="One or more audio files"),
|
| 260 |
+
mode: Literal["general", "medical_en"] = Form("medical_en"),
|
| 261 |
+
):
|
| 262 |
+
if not files:
|
| 263 |
+
raise HTTPException(status_code=400, detail="No files uploaded.")
|
| 264 |
+
|
| 265 |
+
local_paths = save_uploads_to_temp(files)
|
| 266 |
+
audio_paths = filter_audio_files(local_paths)
|
| 267 |
+
|
| 268 |
+
if not audio_paths:
|
| 269 |
+
raise HTTPException(
|
| 270 |
+
status_code=400,
|
| 271 |
+
detail=f"No valid audio files found. Supported extensions: {', '.join(AUDIO_EXTENSIONS)}",
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
items: List[FileTranscript] = []
|
| 275 |
+
for path in audio_paths:
|
| 276 |
+
fname = os.path.basename(path)
|
| 277 |
+
text = transcribe_file(path, mode)
|
| 278 |
+
items.append(FileTranscript(filename=fname, text=text))
|
| 279 |
+
|
| 280 |
+
combined = format_combined(items)
|
| 281 |
+
|
| 282 |
+
return TranscriptionResponse(
|
| 283 |
+
mode=mode,
|
| 284 |
+
combined_transcript=combined,
|
| 285 |
+
items=items,
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
# ---------- 2. Multi-file transcription (DOCX download) ----------
|
| 290 |
+
|
| 291 |
+
@app.post("/api/transcribe/files/docx")
|
| 292 |
+
@spaces.GPU
|
| 293 |
+
def transcribe_files_docx(
|
| 294 |
+
files: List[UploadFile] = File(..., description="One or more audio files"),
|
| 295 |
+
mode: Literal["general", "medical_en"] = Form("medical_en"),
|
| 296 |
+
):
|
| 297 |
+
if not files:
|
| 298 |
+
raise HTTPException(status_code=400, detail="No files uploaded.")
|
| 299 |
+
|
| 300 |
+
local_paths = save_uploads_to_temp(files)
|
| 301 |
+
audio_paths = filter_audio_files(local_paths)
|
| 302 |
+
|
| 303 |
+
if not audio_paths:
|
| 304 |
+
raise HTTPException(
|
| 305 |
+
status_code=400,
|
| 306 |
+
detail=f"No valid audio files found. Supported extensions: {', '.join(AUDIO_EXTENSIONS)}",
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
items: List[FileTranscript] = []
|
| 310 |
+
for path in audio_paths:
|
| 311 |
+
fname = os.path.basename(path)
|
| 312 |
+
text = transcribe_file(path, mode)
|
| 313 |
+
items.append(FileTranscript(filename=fname, text=text))
|
| 314 |
+
|
| 315 |
+
docx_path = build_docx(items, "Multi-file transcription")
|
| 316 |
+
|
| 317 |
+
return FileResponse(
|
| 318 |
+
docx_path,
|
| 319 |
+
media_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document",
|
| 320 |
+
filename="transcripts_files.docx",
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
# ---------- 3. ZIP transcription (JSON) ----------
|
| 325 |
+
|
| 326 |
+
@app.post("/api/transcribe/zip", response_model=TranscriptionResponse)
|
| 327 |
+
@spaces.GPU
|
| 328 |
+
def transcribe_zip(
|
| 329 |
+
file: UploadFile = File(..., description="ZIP file containing audio files"),
|
| 330 |
+
password: str = Form("", description="ZIP password (leave blank if none)"),
|
| 331 |
+
mode: Literal["general", "medical_en"] = Form("medical_en"),
|
| 332 |
+
):
|
| 333 |
+
if file is None:
|
| 334 |
+
raise HTTPException(status_code=400, detail="No ZIP uploaded.")
|
| 335 |
+
|
| 336 |
+
extracted_paths = extract_zip_to_temp(file, password or None)
|
| 337 |
+
audio_paths = filter_audio_files(extracted_paths)
|
| 338 |
+
|
| 339 |
+
if not audio_paths:
|
| 340 |
+
raise HTTPException(
|
| 341 |
+
status_code=400,
|
| 342 |
+
detail=f"No valid audio files found inside ZIP. Supported extensions: {', '.join(AUDIO_EXTENSIONS)}",
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
items: List[FileTranscript] = []
|
| 346 |
+
for path in audio_paths:
|
| 347 |
+
fname = os.path.basename(path)
|
| 348 |
+
text = transcribe_file(path, mode)
|
| 349 |
+
items.append(FileTranscript(filename=fname, text=text))
|
| 350 |
+
|
| 351 |
+
combined = format_combined(items)
|
| 352 |
+
|
| 353 |
+
return TranscriptionResponse(
|
| 354 |
+
mode=mode,
|
| 355 |
+
combined_transcript=combined,
|
| 356 |
+
items=items,
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
# ---------- 4. ZIP transcription (DOCX download) ----------
|
| 361 |
+
|
| 362 |
+
@app.post("/api/transcribe/zip/docx")
|
| 363 |
+
@spaces.GPU
|
| 364 |
+
def transcribe_zip_docx(
|
| 365 |
+
file: UploadFile = File(..., description="ZIP file containing audio files"),
|
| 366 |
+
password: str = Form("", description="ZIP password (leave blank if none)"),
|
| 367 |
+
mode: Literal["general", "medical_en"] = Form("medical_en"),
|
| 368 |
+
):
|
| 369 |
+
if file is None:
|
| 370 |
+
raise HTTPException(status_code=400, detail="No ZIP uploaded.")
|
| 371 |
+
|
| 372 |
+
extracted_paths = extract_zip_to_temp(file, password or None)
|
| 373 |
+
audio_paths = filter_audio_files(extracted_paths)
|
| 374 |
+
|
| 375 |
+
if not audio_paths:
|
| 376 |
+
raise HTTPException(
|
| 377 |
+
status_code=400,
|
| 378 |
+
detail=f"No valid audio files found inside ZIP. Supported extensions: {', '.join(AUDIO_EXTENSIONS)}",
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
items: List[FileTranscript] = []
|
| 382 |
+
for path in audio_paths:
|
| 383 |
+
fname = os.path.basename(path)
|
| 384 |
+
text = transcribe_file(path, mode)
|
| 385 |
+
items.append(FileTranscript(filename=fname, text=text))
|
| 386 |
+
|
| 387 |
+
docx_path = build_docx(items, "ZIP transcription")
|
| 388 |
+
|
| 389 |
+
return FileResponse(
|
| 390 |
+
docx_path,
|
| 391 |
+
media_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document",
|
| 392 |
+
filename="transcripts_zip.docx",
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
# ===================== Simple HTML UI =====================
|
| 397 |
+
|
| 398 |
HTML_UI = """
|
| 399 |
<!DOCTYPE html>
|
| 400 |
<html lang="en">
|
|
|
|
| 988 |
</body>
|
| 989 |
</html>
|
| 990 |
"""
|
| 991 |
+
|
| 992 |
+
|
| 993 |
+
@app.get("/ui", response_class=HTMLResponse)
|
| 994 |
+
def get_ui():
|
| 995 |
+
return HTML_UI
|
| 996 |
+
|
| 997 |
+
|
| 998 |
+
# ===================== Run (local dev / HF Spaces) =====================
|
| 999 |
+
|
| 1000 |
+
if __name__ == "__main__":
|
| 1001 |
+
import uvicorn
|
| 1002 |
+
|
| 1003 |
+
port = int(os.getenv("PORT", "7860"))
|
| 1004 |
+
uvicorn.run("app:app", host="0.0.0.0", port=port, reload=False)
|