Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -163,11 +163,17 @@ app.prepare(ctx_id=0, det_size=(640, 640))
|
|
| 163 |
|
| 164 |
# download checkpoints
|
| 165 |
print("Downloading checkpoints")
|
| 166 |
-
hf_hub_download(repo_id="briaai/
|
| 167 |
-
hf_hub_download(repo_id="briaai/
|
| 168 |
-
hf_hub_download(repo_id="briaai/
|
| 169 |
-
|
| 170 |
-
hf_hub_download(repo_id="briaai/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
|
| 173 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -176,6 +182,8 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 176 |
face_adapter = f"./checkpoints/checkpoint_105000/ip-adapter.bin"
|
| 177 |
controlnet_path = f"./checkpoints/checkpoint_105000/controlnet"
|
| 178 |
base_model_path = f'briaai/BRIA-2.3'
|
|
|
|
|
|
|
| 179 |
resolution = 1024
|
| 180 |
|
| 181 |
# Load ControlNet models
|
|
@@ -206,13 +214,19 @@ pipe.load_ip_adapter_instantid(face_adapter)
|
|
| 206 |
|
| 207 |
clip_embeds=None
|
| 208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
-
|
| 211 |
|
| 212 |
@spaces.GPU
|
| 213 |
-
|
| 214 |
-
def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, progress=gr.Progress(track_tqdm=True)):
|
| 215 |
-
|
| 216 |
|
| 217 |
if image_path is None:
|
| 218 |
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
|
|
@@ -239,9 +253,6 @@ def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_imag
|
|
| 239 |
files = [
|
| 240 |
('file', ('image_name.jpeg', image_file, 'image/jpeg')) # Specify file name, file-like object, and MIME type
|
| 241 |
]
|
| 242 |
-
# headers = {
|
| 243 |
-
# 'api_token': 'a10d6386dd6a11ebba800242ac130004'
|
| 244 |
-
# }
|
| 245 |
headers = {
|
| 246 |
'api_token': os.getenv('BRIA_RMBG_TOKEN') # Securely retrieve the token
|
| 247 |
}
|
|
@@ -269,7 +280,32 @@ def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_imag
|
|
| 269 |
|
| 270 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 271 |
|
| 272 |
-
full_prompt = prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
print("Start inference...")
|
| 275 |
images = pipe(
|
|
@@ -341,19 +377,21 @@ with gr.Blocks(css=css) as demo:
|
|
| 341 |
placeholder="Enter your prompt here",
|
| 342 |
info="Describe what you want to generate or modify in the image."
|
| 343 |
)
|
| 344 |
-
|
|
|
|
|
|
|
| 345 |
submit = gr.Button("Submit", variant="primary")
|
| 346 |
|
| 347 |
with gr.Accordion(open=False, label="Advanced Options"):
|
| 348 |
num_steps = gr.Slider(
|
| 349 |
-
label="Number of
|
| 350 |
minimum=1,
|
| 351 |
maximum=100,
|
| 352 |
step=1,
|
| 353 |
value=30,
|
| 354 |
)
|
| 355 |
guidance_scale = gr.Slider(
|
| 356 |
-
label="
|
| 357 |
minimum=0.1,
|
| 358 |
maximum=10.0,
|
| 359 |
step=0.1,
|
|
@@ -367,27 +405,33 @@ with gr.Blocks(css=css) as demo:
|
|
| 367 |
value=1,
|
| 368 |
)
|
| 369 |
ip_adapter_scale = gr.Slider(
|
| 370 |
-
label="
|
| 371 |
minimum=0.0,
|
| 372 |
maximum=1.0,
|
| 373 |
step=0.01,
|
| 374 |
value=0.8,
|
| 375 |
)
|
| 376 |
kps_scale = gr.Slider(
|
| 377 |
-
label="
|
| 378 |
minimum=0.0,
|
| 379 |
maximum=1.0,
|
| 380 |
step=0.01,
|
| 381 |
value=0.6,
|
| 382 |
)
|
| 383 |
canny_scale = gr.Slider(
|
| 384 |
-
label="canny
|
| 385 |
minimum=0.0,
|
| 386 |
maximum=1.0,
|
| 387 |
step=0.01,
|
| 388 |
value=0.4,
|
| 389 |
)
|
| 390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
seed = gr.Slider(
|
| 392 |
label="Seed",
|
| 393 |
minimum=0,
|
|
@@ -409,7 +453,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 409 |
api_name=False,
|
| 410 |
).then(
|
| 411 |
fn=generate_image,
|
| 412 |
-
inputs=[img_file, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale],
|
|
|
|
| 413 |
# outputs=[gallery]
|
| 414 |
outputs=gallery
|
| 415 |
)
|
|
|
|
| 163 |
|
| 164 |
# download checkpoints
|
| 165 |
print("Downloading checkpoints")
|
| 166 |
+
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="checkpoint_105000/controlnet/config.json", local_dir="./checkpoints")
|
| 167 |
+
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="checkpoint_105000/controlnet/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
|
| 168 |
+
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="checkpoint_105000/ip-adapter.bin", local_dir="./checkpoints")
|
| 169 |
+
|
| 170 |
+
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="image_encoder/pytorch_model.bin", local_dir="./checkpoints")
|
| 171 |
+
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="image_encoder/config.json", local_dir="./checkpoints")
|
| 172 |
+
|
| 173 |
+
# Download Lora weights
|
| 174 |
+
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="LoRAs/3D_avatar/pytorch_lora_weights.safetensors", local_dir=".")
|
| 175 |
+
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="LoRAs/coloringbook/pytorch_lora_weights.safetensors", local_dir=".")
|
| 176 |
+
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="LoRAs/One_line_portraits_Light/pytorch_lora_weights.safetensors", local_dir=".")
|
| 177 |
|
| 178 |
|
| 179 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 182 |
face_adapter = f"./checkpoints/checkpoint_105000/ip-adapter.bin"
|
| 183 |
controlnet_path = f"./checkpoints/checkpoint_105000/controlnet"
|
| 184 |
base_model_path = f'briaai/BRIA-2.3'
|
| 185 |
+
lora_base_path = f"./LoRAs"
|
| 186 |
+
|
| 187 |
resolution = 1024
|
| 188 |
|
| 189 |
# Load ControlNet models
|
|
|
|
| 214 |
|
| 215 |
clip_embeds=None
|
| 216 |
|
| 217 |
+
Loras_dict = {
|
| 218 |
+
"":"",
|
| 219 |
+
"One_line_portraits_Light": "An illustration of ",
|
| 220 |
+
"3D_avatar": "An illustration of ",
|
| 221 |
+
"coloringbook": "An illustration of "
|
| 222 |
+
}
|
| 223 |
|
| 224 |
+
lora_names = Loras_dict.keys()
|
| 225 |
|
| 226 |
@spaces.GPU
|
| 227 |
+
def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 228 |
+
# def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, progress=gr.Progress(track_tqdm=True)):
|
| 229 |
+
global CURRENT_LORA_NAME # Use the global variable to track LoRA
|
| 230 |
|
| 231 |
if image_path is None:
|
| 232 |
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
|
|
|
|
| 253 |
files = [
|
| 254 |
('file', ('image_name.jpeg', image_file, 'image/jpeg')) # Specify file name, file-like object, and MIME type
|
| 255 |
]
|
|
|
|
|
|
|
|
|
|
| 256 |
headers = {
|
| 257 |
'api_token': os.getenv('BRIA_RMBG_TOKEN') # Securely retrieve the token
|
| 258 |
}
|
|
|
|
| 280 |
|
| 281 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 282 |
|
| 283 |
+
# full_prompt = prompt
|
| 284 |
+
if lora_name != CURRENT_LORA_NAME: # Check if LoRA needs to be changed
|
| 285 |
+
if CURRENT_LORA_NAME is not None: # If a LoRA is already loaded, unload it
|
| 286 |
+
pipe.disable_lora()
|
| 287 |
+
pipe.unfuse_lora()
|
| 288 |
+
pipe.unload_lora_weights()
|
| 289 |
+
print(f"Unloaded LoRA: {CURRENT_LORA_NAME}")
|
| 290 |
+
|
| 291 |
+
if lora_name != "": # Load the new LoRA if specified
|
| 292 |
+
# pipe.enable_model_cpu_offload()
|
| 293 |
+
lora_path = os.path.join(lora_base_path, lora_name, "pytorch_lora_weights.safetensors")
|
| 294 |
+
pipe.load_lora_weights(lora_path)
|
| 295 |
+
pipe.fuse_lora(lora_scale)
|
| 296 |
+
pipe.enable_lora()
|
| 297 |
+
|
| 298 |
+
# lora_prefix = Loras_dict[lora_name]
|
| 299 |
+
|
| 300 |
+
print(f"Loaded new LoRA: {lora_name}")
|
| 301 |
+
|
| 302 |
+
# Update the current LoRA name
|
| 303 |
+
CURRENT_LORA_NAME = lora_name
|
| 304 |
+
|
| 305 |
+
if lora_name != "":
|
| 306 |
+
full_prompt = f"{Loras_dict[lora_name]} + " " + {prompt}"
|
| 307 |
+
else:
|
| 308 |
+
full_prompt = prompt
|
| 309 |
|
| 310 |
print("Start inference...")
|
| 311 |
images = pipe(
|
|
|
|
| 377 |
placeholder="Enter your prompt here",
|
| 378 |
info="Describe what you want to generate or modify in the image."
|
| 379 |
)
|
| 380 |
+
|
| 381 |
+
lora_name = gr.Dropdown(choices=lora_names, label="LoRA", value="", info="Select a LoRA name from the list, not selecting any will disable LoRA.")
|
| 382 |
+
|
| 383 |
submit = gr.Button("Submit", variant="primary")
|
| 384 |
|
| 385 |
with gr.Accordion(open=False, label="Advanced Options"):
|
| 386 |
num_steps = gr.Slider(
|
| 387 |
+
label="Number of diffusion steps",
|
| 388 |
minimum=1,
|
| 389 |
maximum=100,
|
| 390 |
step=1,
|
| 391 |
value=30,
|
| 392 |
)
|
| 393 |
guidance_scale = gr.Slider(
|
| 394 |
+
label="cfg scale",
|
| 395 |
minimum=0.1,
|
| 396 |
maximum=10.0,
|
| 397 |
step=0.1,
|
|
|
|
| 405 |
value=1,
|
| 406 |
)
|
| 407 |
ip_adapter_scale = gr.Slider(
|
| 408 |
+
label="ID Adapter scale",
|
| 409 |
minimum=0.0,
|
| 410 |
maximum=1.0,
|
| 411 |
step=0.01,
|
| 412 |
value=0.8,
|
| 413 |
)
|
| 414 |
kps_scale = gr.Slider(
|
| 415 |
+
label="lnmks ControlNet scale",
|
| 416 |
minimum=0.0,
|
| 417 |
maximum=1.0,
|
| 418 |
step=0.01,
|
| 419 |
value=0.6,
|
| 420 |
)
|
| 421 |
canny_scale = gr.Slider(
|
| 422 |
+
label="canny ControlNet scale",
|
| 423 |
minimum=0.0,
|
| 424 |
maximum=1.0,
|
| 425 |
step=0.01,
|
| 426 |
value=0.4,
|
| 427 |
)
|
| 428 |
+
lora_scale = gr.Slider(
|
| 429 |
+
label="LoRA scale",
|
| 430 |
+
minimum=0.0,
|
| 431 |
+
maximum=1.0,
|
| 432 |
+
step=0.01,
|
| 433 |
+
value=0.7,
|
| 434 |
+
)
|
| 435 |
seed = gr.Slider(
|
| 436 |
label="Seed",
|
| 437 |
minimum=0,
|
|
|
|
| 453 |
api_name=False,
|
| 454 |
).then(
|
| 455 |
fn=generate_image,
|
| 456 |
+
# inputs=[img_file, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale],
|
| 457 |
+
inputs=[img_file, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name, lora_scale],
|
| 458 |
# outputs=[gallery]
|
| 459 |
outputs=gallery
|
| 460 |
)
|