Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,7 +22,7 @@ import pandas as pd
|
|
| 22 |
import json
|
| 23 |
import requests
|
| 24 |
from io import BytesIO
|
| 25 |
-
from huggingface_hub import hf_hub_download
|
| 26 |
|
| 27 |
|
| 28 |
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
|
|
@@ -113,14 +113,14 @@ def process_image_by_bbox_larger(input_image, bbox_xyxy, min_bbox_ratio=0.2):
|
|
| 113 |
|
| 114 |
return resized_image
|
| 115 |
|
| 116 |
-
def calc_emb_cropped(image, app):
|
| 117 |
face_image = image.copy()
|
| 118 |
|
| 119 |
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 120 |
|
| 121 |
face_info = face_info[0]
|
| 122 |
|
| 123 |
-
cropped_face_image = process_image_by_bbox_larger(face_image, face_info["bbox"], min_bbox_ratio=
|
| 124 |
|
| 125 |
return cropped_face_image
|
| 126 |
|
|
@@ -144,7 +144,29 @@ default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly
|
|
| 144 |
CURRENT_LORA_NAME = None
|
| 145 |
|
| 146 |
# Load face detection and recognition package
|
| 147 |
-
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 149 |
|
| 150 |
|
|
@@ -155,19 +177,14 @@ hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="controlnet/diffu
|
|
| 155 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="ip-adapter.bin", local_dir="./checkpoints")
|
| 156 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="image_encoder/pytorch_model.bin", local_dir="./checkpoints")
|
| 157 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="image_encoder/config.json", local_dir="./checkpoints")
|
| 158 |
-
|
| 159 |
-
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/3D_illustration/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 160 |
-
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Avatar_internlm/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 161 |
-
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Characters/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 162 |
-
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Storyboards/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 163 |
-
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Vangogh_Vanilla/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 164 |
|
| 165 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 166 |
|
| 167 |
# ckpts paths
|
| 168 |
face_adapter = f"./checkpoints/ip-adapter.bin"
|
| 169 |
controlnet_path = f"./checkpoints/controlnet"
|
| 170 |
-
lora_base_path = "./checkpoints/LoRAs"
|
| 171 |
base_model_path = f'briaai/BRIA-2.3'
|
| 172 |
resolution = 1024
|
| 173 |
|
|
@@ -199,16 +216,16 @@ pipe.load_ip_adapter_instantid(face_adapter)
|
|
| 199 |
|
| 200 |
clip_embeds=None
|
| 201 |
|
| 202 |
-
Loras_dict = {
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
|
| 211 |
-
lora_names = Loras_dict.keys()
|
| 212 |
|
| 213 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 214 |
if randomize_seed:
|
|
@@ -217,8 +234,9 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 217 |
|
| 218 |
|
| 219 |
@spaces.GPU
|
| 220 |
-
def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 221 |
-
|
|
|
|
| 222 |
|
| 223 |
if image_path is None:
|
| 224 |
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
|
|
@@ -272,31 +290,31 @@ def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_imag
|
|
| 272 |
|
| 273 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 274 |
|
| 275 |
-
if lora_name != CURRENT_LORA_NAME: # Check if LoRA needs to be changed
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
|
| 289 |
-
|
| 290 |
|
| 291 |
-
|
| 292 |
|
| 293 |
-
|
| 294 |
-
|
| 295 |
|
| 296 |
-
if lora_name != "":
|
| 297 |
-
|
| 298 |
-
else:
|
| 299 |
-
|
| 300 |
|
| 301 |
print("Start inference...")
|
| 302 |
images = pipe(
|
|
@@ -360,7 +378,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 360 |
info="Describe what you want to generate or modify in the image."
|
| 361 |
)
|
| 362 |
|
| 363 |
-
lora_name = gr.Dropdown(choices=lora_names, label="LoRA", value="", info="Select a LoRA name from the list, not selecting any will disable LoRA.")
|
| 364 |
|
| 365 |
submit = gr.Button("Submit", variant="primary")
|
| 366 |
|
|
@@ -407,13 +425,13 @@ with gr.Blocks(css=css) as demo:
|
|
| 407 |
step=0.01,
|
| 408 |
value=0.4,
|
| 409 |
)
|
| 410 |
-
lora_scale = gr.Slider(
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
)
|
| 417 |
seed = gr.Slider(
|
| 418 |
label="Seed",
|
| 419 |
minimum=0,
|
|
|
|
| 22 |
import json
|
| 23 |
import requests
|
| 24 |
from io import BytesIO
|
| 25 |
+
from huggingface_hub import hf_hub_download, HfApi
|
| 26 |
|
| 27 |
|
| 28 |
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
|
|
|
|
| 113 |
|
| 114 |
return resized_image
|
| 115 |
|
| 116 |
+
def calc_emb_cropped(image, app, min_bbox_ratio=0.2):
|
| 117 |
face_image = image.copy()
|
| 118 |
|
| 119 |
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 120 |
|
| 121 |
face_info = face_info[0]
|
| 122 |
|
| 123 |
+
cropped_face_image = process_image_by_bbox_larger(face_image, face_info["bbox"], min_bbox_ratio=min_bbox_ratio)
|
| 124 |
|
| 125 |
return cropped_face_image
|
| 126 |
|
|
|
|
| 144 |
CURRENT_LORA_NAME = None
|
| 145 |
|
| 146 |
# Load face detection and recognition package
|
| 147 |
+
# app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
# Define your repository, target directory, and local directory
|
| 151 |
+
repo_id = "briaai/ID_preservation_2.3"
|
| 152 |
+
target_dir = "models_aura/" # The directory you want to download
|
| 153 |
+
local_dir = "./checkpoints" # Local directory to save files
|
| 154 |
+
|
| 155 |
+
# Initialize the API
|
| 156 |
+
api = HfApi()
|
| 157 |
+
# List all files in the repository
|
| 158 |
+
files = api.list_repo_files(repo_id=repo_id, repo_type="model") # Use repo_type="space" for Spaces
|
| 159 |
+
|
| 160 |
+
# Filter files that are in the target directory
|
| 161 |
+
files_in_dir = [file for file in files if file.startswith(target_dir)]
|
| 162 |
+
# Download each file in the target directory
|
| 163 |
+
for file in files_in_dir:
|
| 164 |
+
local_path = os.path.join(local_dir, file)
|
| 165 |
+
os.makedirs(os.path.dirname(local_path), exist_ok=True) # Ensure local directories exist
|
| 166 |
+
print(f"Downloading: {file}")
|
| 167 |
+
hf_hub_download(repo_id=repo_id, filename=file, local_dir=os.path.dirname(local_path))
|
| 168 |
+
|
| 169 |
+
app = FaceAnalysis(name='auraface', root='./checkpoints/models_aura/', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
| 170 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 171 |
|
| 172 |
|
|
|
|
| 177 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="ip-adapter.bin", local_dir="./checkpoints")
|
| 178 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="image_encoder/pytorch_model.bin", local_dir="./checkpoints")
|
| 179 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="image_encoder/config.json", local_dir="./checkpoints")
|
| 180 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 183 |
|
| 184 |
# ckpts paths
|
| 185 |
face_adapter = f"./checkpoints/ip-adapter.bin"
|
| 186 |
controlnet_path = f"./checkpoints/controlnet"
|
| 187 |
+
# lora_base_path = "./checkpoints/LoRAs"
|
| 188 |
base_model_path = f'briaai/BRIA-2.3'
|
| 189 |
resolution = 1024
|
| 190 |
|
|
|
|
| 216 |
|
| 217 |
clip_embeds=None
|
| 218 |
|
| 219 |
+
# Loras_dict = {
|
| 220 |
+
# "":"",
|
| 221 |
+
# "Vangogh_Vanilla": "bold, dramatic brush strokes, vibrant colors, swirling patterns, intense, emotionally charged paintings of",
|
| 222 |
+
# "Avatar_internlm": "2d anime sketch avatar of",
|
| 223 |
+
# "Storyboards": "Illustration style for storyboarding.",
|
| 224 |
+
# "3D_illustration": "3D object illustration, abstract.",
|
| 225 |
+
# "Characters": "gaming vector Art."
|
| 226 |
+
# }
|
| 227 |
|
| 228 |
+
# lora_names = Loras_dict.keys()
|
| 229 |
|
| 230 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 231 |
if randomize_seed:
|
|
|
|
| 234 |
|
| 235 |
|
| 236 |
@spaces.GPU
|
| 237 |
+
# def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 238 |
+
def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, progress=gr.Progress(track_tqdm=True)):
|
| 239 |
+
# global CURRENT_LORA_NAME # Use the global variable to track LoRA
|
| 240 |
|
| 241 |
if image_path is None:
|
| 242 |
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
|
|
|
|
| 290 |
|
| 291 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 292 |
|
| 293 |
+
# if lora_name != CURRENT_LORA_NAME: # Check if LoRA needs to be changed
|
| 294 |
+
# if CURRENT_LORA_NAME is not None: # If a LoRA is already loaded, unload it
|
| 295 |
+
# pipe.disable_lora()
|
| 296 |
+
# pipe.unfuse_lora()
|
| 297 |
+
# pipe.unload_lora_weights()
|
| 298 |
+
# print(f"Unloaded LoRA: {CURRENT_LORA_NAME}")
|
| 299 |
|
| 300 |
+
# if lora_name != "": # Load the new LoRA if specified
|
| 301 |
+
# # pipe.enable_model_cpu_offload()
|
| 302 |
+
# lora_path = os.path.join(lora_base_path, lora_name, "pytorch_lora_weights.safetensors")
|
| 303 |
+
# pipe.load_lora_weights(lora_path)
|
| 304 |
+
# pipe.fuse_lora(lora_scale)
|
| 305 |
+
# pipe.enable_lora()
|
| 306 |
|
| 307 |
+
# # lora_prefix = Loras_dict[lora_name]
|
| 308 |
|
| 309 |
+
# print(f"Loaded new LoRA: {lora_name}")
|
| 310 |
|
| 311 |
+
# # Update the current LoRA name
|
| 312 |
+
# CURRENT_LORA_NAME = lora_name
|
| 313 |
|
| 314 |
+
# if lora_name != "":
|
| 315 |
+
# full_prompt = f"{Loras_dict[lora_name]} + " " + {prompt}"
|
| 316 |
+
# else:
|
| 317 |
+
full_prompt = prompt
|
| 318 |
|
| 319 |
print("Start inference...")
|
| 320 |
images = pipe(
|
|
|
|
| 378 |
info="Describe what you want to generate or modify in the image."
|
| 379 |
)
|
| 380 |
|
| 381 |
+
# lora_name = gr.Dropdown(choices=lora_names, label="LoRA", value="", info="Select a LoRA name from the list, not selecting any will disable LoRA.")
|
| 382 |
|
| 383 |
submit = gr.Button("Submit", variant="primary")
|
| 384 |
|
|
|
|
| 425 |
step=0.01,
|
| 426 |
value=0.4,
|
| 427 |
)
|
| 428 |
+
# lora_scale = gr.Slider(
|
| 429 |
+
# label="lora_scale",
|
| 430 |
+
# minimum=0.0,
|
| 431 |
+
# maximum=1.0,
|
| 432 |
+
# step=0.01,
|
| 433 |
+
# value=0.7,
|
| 434 |
+
# )
|
| 435 |
seed = gr.Slider(
|
| 436 |
label="Seed",
|
| 437 |
minimum=0,
|