Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,7 +10,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
| 10 |
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
|
| 11 |
os.environ["DISABLE_BITSANDBYTES"] = "1"
|
| 12 |
|
| 13 |
-
# Hugging Face token login via
|
| 14 |
from huggingface_hub import login
|
| 15 |
login(os.environ.get("HF_TOKEN", ""))
|
| 16 |
|
|
@@ -19,7 +19,7 @@ login(os.environ.get("HF_TOKEN", ""))
|
|
| 19 |
# -------------------------------
|
| 20 |
MODEL_NAME = "google/medgemma-4b-it" # or lighter if CPU only
|
| 21 |
|
| 22 |
-
#
|
| 23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
|
| 25 |
# Load tokenizer
|
|
@@ -28,8 +28,8 @@ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
| 28 |
# Load model safely
|
| 29 |
model = AutoModelForCausalLM.from_pretrained(
|
| 30 |
MODEL_NAME,
|
| 31 |
-
torch_dtype=torch.float32, # safer
|
| 32 |
-
device_map="auto" if device=="cuda" else None
|
| 33 |
)
|
| 34 |
|
| 35 |
# -------------------------------
|
|
@@ -59,11 +59,21 @@ def medgemma_generate(prompt):
|
|
| 59 |
# -------------------------------
|
| 60 |
demo = gr.Interface(
|
| 61 |
fn=medgemma_generate,
|
| 62 |
-
inputs=gr.Textbox(
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
title="MedGemma Q&A",
|
| 65 |
description="Ask medical questions (English). Safe generation config prevents NaNs on CPU."
|
| 66 |
)
|
| 67 |
|
|
|
|
| 68 |
if __name__ == "__main__":
|
| 69 |
demo.launch()
|
|
|
|
| 10 |
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
|
| 11 |
os.environ["DISABLE_BITSANDBYTES"] = "1"
|
| 12 |
|
| 13 |
+
# Hugging Face token login via environment variable
|
| 14 |
from huggingface_hub import login
|
| 15 |
login(os.environ.get("HF_TOKEN", ""))
|
| 16 |
|
|
|
|
| 19 |
# -------------------------------
|
| 20 |
MODEL_NAME = "google/medgemma-4b-it" # or lighter if CPU only
|
| 21 |
|
| 22 |
+
# Auto-detect device
|
| 23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
|
| 25 |
# Load tokenizer
|
|
|
|
| 28 |
# Load model safely
|
| 29 |
model = AutoModelForCausalLM.from_pretrained(
|
| 30 |
MODEL_NAME,
|
| 31 |
+
torch_dtype=torch.float32, # safer on CPU
|
| 32 |
+
device_map="auto" if device == "cuda" else None
|
| 33 |
)
|
| 34 |
|
| 35 |
# -------------------------------
|
|
|
|
| 59 |
# -------------------------------
|
| 60 |
demo = gr.Interface(
|
| 61 |
fn=medgemma_generate,
|
| 62 |
+
inputs=gr.Textbox(
|
| 63 |
+
lines=4,
|
| 64 |
+
placeholder="Enter your medical prompt...",
|
| 65 |
+
label="Prompt"
|
| 66 |
+
),
|
| 67 |
+
outputs=gr.Textbox(
|
| 68 |
+
lines=15, # start with 15 lines
|
| 69 |
+
max_lines=100, # auto-expand up to 100 lines
|
| 70 |
+
interactive=False,
|
| 71 |
+
label="Generated Answer"
|
| 72 |
+
),
|
| 73 |
title="MedGemma Q&A",
|
| 74 |
description="Ask medical questions (English). Safe generation config prevents NaNs on CPU."
|
| 75 |
)
|
| 76 |
|
| 77 |
+
# Launch the app
|
| 78 |
if __name__ == "__main__":
|
| 79 |
demo.launch()
|