Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,49 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
from transformers import
|
| 5 |
-
|
| 6 |
|
| 7 |
import os
|
| 8 |
-
|
| 9 |
-
os.environ["DISABLE_BITSANDBYTES"] = "1"
|
| 10 |
-
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
login(os.environ["HF_TOKEN"])
|
| 14 |
|
| 15 |
-
|
| 16 |
-
MODEL_ID = "google/medgemma-4b-it"
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
load_in_4bit=True,
|
| 21 |
-
bnb_4bit_use_double_quant=True,
|
| 22 |
-
bnb_4bit_quant_type="nf4",
|
| 23 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
| 24 |
-
)
|
| 25 |
|
| 26 |
-
# Load model
|
| 27 |
model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
MODEL_ID,
|
| 29 |
-
|
| 30 |
-
|
|
|
|
| 31 |
)
|
| 32 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 33 |
|
| 34 |
-
|
|
|
|
| 35 |
|
| 36 |
-
#
|
| 37 |
def medgemma_chat(prompt):
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
if __name__ == "__main__":
|
| 50 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
|
| 3 |
+
import gradio as gr
|
| 4 |
|
| 5 |
import os
|
| 6 |
+
from huggingface_hub import login
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
login(os.environ["HF_TOKEN"]) # use the token with gated repo access
|
|
|
|
| 9 |
|
| 10 |
+
MODEL_ID = "google/med-gemma-2b"
|
|
|
|
| 11 |
|
| 12 |
+
# Load tokenizer
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Load model with 4-bit quantization (works on CPU)
|
| 16 |
model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
MODEL_ID,
|
| 18 |
+
device_map="cpu",
|
| 19 |
+
torch_dtype=torch.float32, # stay safe from NaN in CPU mode
|
| 20 |
+
load_in_4bit=True # quantize
|
| 21 |
)
|
|
|
|
| 22 |
|
| 23 |
+
# Wrap in a pipeline
|
| 24 |
+
pipe = TextGenerationPipeline(model=model, tokenizer=tokenizer, device=-1)
|
| 25 |
|
| 26 |
+
# Safe generation function
|
| 27 |
def medgemma_chat(prompt):
|
| 28 |
+
try:
|
| 29 |
+
output = pipe(
|
| 30 |
+
prompt,
|
| 31 |
+
max_new_tokens=200,
|
| 32 |
+
temperature=1.0, # stable
|
| 33 |
+
top_p=0.9,
|
| 34 |
+
do_sample=True
|
| 35 |
+
)
|
| 36 |
+
return output[0]["generated_text"]
|
| 37 |
+
except Exception as e:
|
| 38 |
+
return f"⚠️ Error: {str(e)}"
|
| 39 |
+
|
| 40 |
+
# Gradio UI
|
| 41 |
+
with gr.Blocks() as demo:
|
| 42 |
+
gr.Markdown("# 🩺 MedGemma (Quantized, CPU-safe)")
|
| 43 |
+
inp = gr.Textbox(label="Enter patient info", placeholder="Example: Patient has fever and cough...")
|
| 44 |
+
out = gr.Textbox(label="Model Output")
|
| 45 |
+
btn = gr.Button("Generate")
|
| 46 |
+
btn.click(medgemma_chat, inp, out)
|
| 47 |
|
| 48 |
if __name__ == "__main__":
|
| 49 |
+
demo.launch()
|