Spaces:
Running
Running
| from fastapi import FastAPI | |
| from pydantic import BaseModel | |
| from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM | |
| import dateparser | |
| from datetime import datetime | |
| import re | |
| app = FastAPI() | |
| # Load classification model | |
| classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
| # Load summarization model | |
| summarizer_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small") | |
| summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small") | |
| # Labels | |
| labels = ["task", "event", "reminder", "meeting", "relationship", "note", "journal", "memory", "other"] | |
| class TextInput(BaseModel): | |
| text: str | |
| def extract_dates(text): | |
| time_expressions = re.findall( | |
| r'\b(kal|aaj|parso|raat|subah|shaam|dopahar|[0-9]{1,2} baje|next week|tomorrow|today|yesterday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday|[\d]{1,2}/[\d]{1,2}/[\d]{2,4})\b', | |
| text, flags=re.IGNORECASE) | |
| parsed = [str(dateparser.parse(t)) for t in time_expressions if dateparser.parse(t)] | |
| return list(set(parsed)), list(set(time_expressions)) | |
| def detect_tense(parsed_dates): | |
| now = datetime.now() | |
| tenses = set() | |
| for d in parsed_dates: | |
| dt = dateparser.parse(d) | |
| if not dt: | |
| continue | |
| if dt < now: | |
| tenses.add("past") | |
| elif dt > now: | |
| tenses.add("future") | |
| else: | |
| tenses.add("present") | |
| return list(tenses) if tenses else ["unknown"] | |
| def generate_summary(text): | |
| input_ids = summarizer_tokenizer("summarize: " + text, return_tensors="pt").input_ids | |
| output_ids = summarizer_model.generate(input_ids, max_length=50, num_beams=4, early_stopping=True) | |
| return summarizer_tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
| async def analyze(input: TextInput): | |
| text = input.text | |
| classification = classifier(text, labels) | |
| best_label = classification['labels'][0] | |
| scores = dict(zip(classification['labels'], classification['scores'])) | |
| parsed_dates, time_mentions = extract_dates(text) | |
| tenses = detect_tense(parsed_dates) | |
| summary = generate_summary(text) | |
| return { | |
| "type": best_label, | |
| "confidence_scores": scores, | |
| "time_mentions": time_mentions, | |
| "parsed_dates": parsed_dates, | |
| "tense": tenses, | |
| "summary": summary | |
| } | |