Spaces:
Running
Running
Update API to save data in PostgresSQL
Browse files- main.py +138 -40
- requirements.txt +3 -1
main.py
CHANGED
|
@@ -20,6 +20,15 @@ from fastapi.responses import ORJSONResponse
|
|
| 20 |
from fastapi.requests import Request
|
| 21 |
from fastapi import status
|
| 22 |
import asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
app = FastAPI(default_response_class=ORJSONResponse)
|
| 25 |
app.add_middleware(
|
|
@@ -30,6 +39,50 @@ app.add_middleware(
|
|
| 30 |
allow_headers=["*"],
|
| 31 |
)
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
# Load classification and summarization models
|
| 34 |
classifier = pipeline("zero-shot-classification", model="joeddav/xlm-roberta-large-xnli")
|
| 35 |
summarizer_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
|
@@ -366,74 +419,111 @@ def get_meta_info(text: str):
|
|
| 366 |
# Function to extract amounts in various currencies from text
|
| 367 |
def extract_amounts(text: str):
|
| 368 |
currency_patterns = [
|
| 369 |
-
#
|
| 370 |
-
(r"(
|
| 371 |
-
|
| 372 |
-
(r"(\
|
| 373 |
-
(r"(
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
|
|
|
| 377 |
(r"(\d+(?:\.\d+)?)\s?(rupees?|rupaye|rupiye)", "INR"),
|
| 378 |
-
(r"(rupaye|rupiye)\s?(\d+(?:,\d{3})*(?:\.\d+)?)", "INR"),
|
| 379 |
-
|
| 380 |
(r"(\d+(?:\.\d+)?)\s?(dollars?)", "USD"),
|
| 381 |
(r"(\d+(?:\.\d+)?)\s?(euros?)", "EUR"),
|
| 382 |
(r"(\d+(?:\.\d+)?)\s?(cents?)", "USD"),
|
| 383 |
-
|
| 384 |
-
# Indian number system
|
| 385 |
(r"(\d+(?:\.\d+)?)\s?(lacs?|lakhs?)", "INR"),
|
| 386 |
(r"(\d+(?:\.\d+)?)\s?(crores?|cr)", "INR"),
|
| 387 |
]
|
| 388 |
|
| 389 |
results = []
|
| 390 |
seen = set()
|
| 391 |
-
|
| 392 |
text_lower = text.lower()
|
| 393 |
|
| 394 |
-
# First, match currency explicitly
|
| 395 |
for pattern, currency_code in currency_patterns:
|
| 396 |
for match in re.finditer(pattern, text_lower):
|
| 397 |
groups = match.groups()
|
| 398 |
-
|
| 399 |
-
|
|
|
|
| 400 |
try:
|
|
|
|
| 401 |
if any(word in groups for word in ['lakh', 'lacs', 'lakhs']):
|
| 402 |
-
number
|
| 403 |
elif any(word in groups for word in ['crore', 'crores', 'cr']):
|
| 404 |
-
number
|
| 405 |
elif 'cents' in groups:
|
| 406 |
-
number
|
| 407 |
-
|
| 408 |
-
number = float(groups[0])
|
| 409 |
-
elif groups[1]:
|
| 410 |
-
number = float(groups[1].replace(",", ""))
|
| 411 |
-
except (ValueError, IndexError):
|
| 412 |
continue
|
| 413 |
|
| 414 |
-
|
| 415 |
-
key = (number, currency_code)
|
| 416 |
-
if key not in seen:
|
| 417 |
-
seen.add(key)
|
| 418 |
-
results.append({
|
| 419 |
-
"value": round(number, 2),
|
| 420 |
-
"currency": currency_code
|
| 421 |
-
})
|
| 422 |
-
|
| 423 |
-
# Second pass: If no currency found but possible standalone expense (like "paid 3000 for rent")
|
| 424 |
-
if not results:
|
| 425 |
-
match = re.search(r"\b(?:paid|spent|buy|purchase|cost|price)\b.*?(\d{2,8})", text_lower)
|
| 426 |
-
if match:
|
| 427 |
-
number = float(match.group(1).replace(",", ""))
|
| 428 |
-
key = (number, "INR")
|
| 429 |
if key not in seen:
|
|
|
|
| 430 |
results.append({
|
| 431 |
"value": round(number, 2),
|
| 432 |
-
"currency":
|
| 433 |
})
|
| 434 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
return results
|
| 436 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
@app.get("/health")
|
| 438 |
def health_check():
|
| 439 |
return {"message": "β
Hello from yourpartner/demospace β API is running!"}
|
|
@@ -543,5 +633,13 @@ async def analyze(input: TextInput):
|
|
| 543 |
"stores": detected_stores,
|
| 544 |
"processing_time_ms": processing_time_ms
|
| 545 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 546 |
return ORJSONResponse(content=result)
|
| 547 |
|
|
|
|
| 20 |
from fastapi.requests import Request
|
| 21 |
from fastapi import status
|
| 22 |
import asyncio
|
| 23 |
+
import psycopg2
|
| 24 |
+
from psycopg2.extras import Json
|
| 25 |
+
import os
|
| 26 |
+
from dotenv import load_dotenv
|
| 27 |
+
|
| 28 |
+
# Load environment variables
|
| 29 |
+
load_dotenv()
|
| 30 |
+
|
| 31 |
+
DATABASE_URL = os.getenv("DATABASE_URL")
|
| 32 |
|
| 33 |
app = FastAPI(default_response_class=ORJSONResponse)
|
| 34 |
app.add_middleware(
|
|
|
|
| 39 |
allow_headers=["*"],
|
| 40 |
)
|
| 41 |
|
| 42 |
+
CREATE_TABLE_QUERY = """
|
| 43 |
+
CREATE TABLE IF NOT EXISTS user_entries (
|
| 44 |
+
uuid UUID PRIMARY KEY,
|
| 45 |
+
raw_text TEXT,
|
| 46 |
+
word_count INT,
|
| 47 |
+
day_of_week TEXT,
|
| 48 |
+
hour_of_day INT,
|
| 49 |
+
month TEXT,
|
| 50 |
+
year INT,
|
| 51 |
+
type TEXT,
|
| 52 |
+
intent TEXT,
|
| 53 |
+
confidence_scores JSONB,
|
| 54 |
+
urgency_score INT,
|
| 55 |
+
time_mentions TEXT[],
|
| 56 |
+
parsed_dates TEXT[],
|
| 57 |
+
tense TEXT[],
|
| 58 |
+
summary TEXT,
|
| 59 |
+
people TEXT[],
|
| 60 |
+
mood TEXT,
|
| 61 |
+
language JSONB,
|
| 62 |
+
sentiment_score FLOAT,
|
| 63 |
+
tags TEXT[],
|
| 64 |
+
action_required BOOLEAN,
|
| 65 |
+
entities JSONB,
|
| 66 |
+
amounts JSONB,
|
| 67 |
+
stores TEXT[],
|
| 68 |
+
processing_time_ms INT,
|
| 69 |
+
created_at TIMESTAMPTZ DEFAULT now()
|
| 70 |
+
);
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
@app.on_event("startup")
|
| 74 |
+
def run_migrations():
|
| 75 |
+
try:
|
| 76 |
+
conn = psycopg2.connect(DATABASE_URL)
|
| 77 |
+
cur = conn.cursor()
|
| 78 |
+
cur.execute(CREATE_TABLE_QUERY)
|
| 79 |
+
conn.commit()
|
| 80 |
+
cur.close()
|
| 81 |
+
conn.close()
|
| 82 |
+
print("β
Table checked/created at startup.")
|
| 83 |
+
except Exception as e:
|
| 84 |
+
print("β Migration failed:", e)
|
| 85 |
+
|
| 86 |
# Load classification and summarization models
|
| 87 |
classifier = pipeline("zero-shot-classification", model="joeddav/xlm-roberta-large-xnli")
|
| 88 |
summarizer_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
|
|
|
| 419 |
# Function to extract amounts in various currencies from text
|
| 420 |
def extract_amounts(text: str):
|
| 421 |
currency_patterns = [
|
| 422 |
+
# βΉ5000, Rs. 1200, INR 300
|
| 423 |
+
(r"(?:βΉ|rs\.?|inr)\s?(\d[\d,]*(?:\.\d+)?)", "INR"),
|
| 424 |
+
# $250.75 or 250.75$
|
| 425 |
+
(r"(?:\$)\s?(\d[\d,]*(?:\.\d+)?)", "USD"),
|
| 426 |
+
(r"(\d[\d,]*(?:\.\d+)?)\s?\$", "USD"),
|
| 427 |
+
# β¬100 or 100β¬
|
| 428 |
+
(r"(?:β¬|eur)\s?(\d[\d,]*(?:\.\d+)?)", "EUR"),
|
| 429 |
+
(r"(\d[\d,]*(?:\.\d+)?)\s?β¬", "EUR"),
|
| 430 |
+
# Word-based currency
|
| 431 |
(r"(\d+(?:\.\d+)?)\s?(rupees?|rupaye|rupiye)", "INR"),
|
|
|
|
|
|
|
| 432 |
(r"(\d+(?:\.\d+)?)\s?(dollars?)", "USD"),
|
| 433 |
(r"(\d+(?:\.\d+)?)\s?(euros?)", "EUR"),
|
| 434 |
(r"(\d+(?:\.\d+)?)\s?(cents?)", "USD"),
|
| 435 |
+
# Indian system
|
|
|
|
| 436 |
(r"(\d+(?:\.\d+)?)\s?(lacs?|lakhs?)", "INR"),
|
| 437 |
(r"(\d+(?:\.\d+)?)\s?(crores?|cr)", "INR"),
|
| 438 |
]
|
| 439 |
|
| 440 |
results = []
|
| 441 |
seen = set()
|
|
|
|
| 442 |
text_lower = text.lower()
|
| 443 |
|
|
|
|
| 444 |
for pattern, currency_code in currency_patterns:
|
| 445 |
for match in re.finditer(pattern, text_lower):
|
| 446 |
groups = match.groups()
|
| 447 |
+
raw_number = next((g for g in groups if re.match(r"\d", g)), None)
|
| 448 |
+
if not raw_number:
|
| 449 |
+
continue
|
| 450 |
try:
|
| 451 |
+
number = float(raw_number.replace(",", ""))
|
| 452 |
if any(word in groups for word in ['lakh', 'lacs', 'lakhs']):
|
| 453 |
+
number *= 100_000
|
| 454 |
elif any(word in groups for word in ['crore', 'crores', 'cr']):
|
| 455 |
+
number *= 10_000_000
|
| 456 |
elif 'cents' in groups:
|
| 457 |
+
number /= 100
|
| 458 |
+
except Exception:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
continue
|
| 460 |
|
| 461 |
+
key = (number, currency_code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
if key not in seen:
|
| 463 |
+
seen.add(key)
|
| 464 |
results.append({
|
| 465 |
"value": round(number, 2),
|
| 466 |
+
"currency": currency_code
|
| 467 |
})
|
| 468 |
|
| 469 |
+
# Fallback: detect simple numeric amounts like "paid 500 for rent"
|
| 470 |
+
if not results:
|
| 471 |
+
match = re.search(r"\b(?:paid|spent|buy|purchase|cost|price)\b.*?(\d{2,8})", text_lower)
|
| 472 |
+
if match:
|
| 473 |
+
try:
|
| 474 |
+
number = float(match.group(1).replace(",", ""))
|
| 475 |
+
key = (number, "INR")
|
| 476 |
+
if key not in seen:
|
| 477 |
+
results.append({
|
| 478 |
+
"value": round(number, 2),
|
| 479 |
+
"currency": "INR"
|
| 480 |
+
})
|
| 481 |
+
except:
|
| 482 |
+
pass
|
| 483 |
+
|
| 484 |
return results
|
| 485 |
|
| 486 |
+
|
| 487 |
+
def insert_text_entry(data):
|
| 488 |
+
try:
|
| 489 |
+
conn = psycopg2.connect(DATABASE_URL)
|
| 490 |
+
cur = conn.cursor()
|
| 491 |
+
|
| 492 |
+
insert_query = """
|
| 493 |
+
INSERT INTO user_entries (
|
| 494 |
+
uuid, raw_text, word_count, day_of_week, hour_of_day, month, year,
|
| 495 |
+
type, intent, confidence_scores, urgency_score,
|
| 496 |
+
time_mentions, parsed_dates, tense, summary,
|
| 497 |
+
people, mood, language, sentiment_score, tags,
|
| 498 |
+
action_required, entities, amounts, stores, processing_time_ms
|
| 499 |
+
) VALUES (
|
| 500 |
+
%(uuid)s, %(raw_text)s, %(word_count)s, %(day_of_week)s, %(hour_of_day)s, %(month)s, %(year)s,
|
| 501 |
+
%(type)s, %(intent)s, %(confidence_scores)s, %(urgency_score)s,
|
| 502 |
+
%(time_mentions)s, %(parsed_dates)s, %(tense)s, %(summary)s,
|
| 503 |
+
%(people)s, %(mood)s, %(language)s, %(sentiment_score)s, %(tags)s,
|
| 504 |
+
%(action_required)s, %(entities)s, %(amounts)s, %(stores)s, %(processing_time_ms)s
|
| 505 |
+
)
|
| 506 |
+
ON CONFLICT (uuid) DO NOTHING;
|
| 507 |
+
"""
|
| 508 |
+
|
| 509 |
+
cur.execute(insert_query, {
|
| 510 |
+
**data,
|
| 511 |
+
"confidence_scores": Json(data["confidence_scores"]),
|
| 512 |
+
"language": Json(data["language"]),
|
| 513 |
+
"entities": Json(data["entities"]),
|
| 514 |
+
"amounts": Json(data["amounts"])
|
| 515 |
+
})
|
| 516 |
+
|
| 517 |
+
conn.commit()
|
| 518 |
+
cur.close()
|
| 519 |
+
conn.close()
|
| 520 |
+
print("β
Data inserted successfully")
|
| 521 |
+
|
| 522 |
+
except Exception as e:
|
| 523 |
+
print("β Failed to insert data:", e)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
|
| 527 |
@app.get("/health")
|
| 528 |
def health_check():
|
| 529 |
return {"message": "β
Hello from yourpartner/demospace β API is running!"}
|
|
|
|
| 633 |
"stores": detected_stores,
|
| 634 |
"processing_time_ms": processing_time_ms
|
| 635 |
}
|
| 636 |
+
|
| 637 |
+
# Insert into database
|
| 638 |
+
await asyncio.to_thread(insert_text_entry, result)
|
| 639 |
+
|
| 640 |
+
# Log the result
|
| 641 |
+
print("β
Analysis complete:", result)
|
| 642 |
+
|
| 643 |
+
# Return the result as JSON response
|
| 644 |
return ORJSONResponse(content=result)
|
| 645 |
|
requirements.txt
CHANGED
|
@@ -9,4 +9,6 @@ textblob
|
|
| 9 |
sentencepiece
|
| 10 |
protobuf
|
| 11 |
scikit-learn
|
| 12 |
-
orjson
|
|
|
|
|
|
|
|
|
| 9 |
sentencepiece
|
| 10 |
protobuf
|
| 11 |
scikit-learn
|
| 12 |
+
orjson
|
| 13 |
+
psycopg2-binary
|
| 14 |
+
python-dotenv
|