Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,396 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
def main():
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
sentiment = result[0]["label"]
|
| 14 |
-
confidence = result[0]["score"]
|
| 15 |
|
| 16 |
-
st.
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
if __name__ == "__main__":
|
| 20 |
main()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
from transformers import pipeline
|
| 4 |
+
import tempfile
|
| 5 |
+
import os
|
| 6 |
+
from typing import List, Dict
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
|
| 9 |
+
@st.cache_resource
|
| 10 |
+
def load_model():
|
| 11 |
+
"""Load and cache the sentiment analysis model"""
|
| 12 |
+
try:
|
| 13 |
+
return pipeline(
|
| 14 |
+
"text-classification",
|
| 15 |
+
model="KeonBlackwell/movie_sentiment_model",
|
| 16 |
+
tokenizer="distilbert-base-uncased"
|
| 17 |
+
)
|
| 18 |
+
except Exception as e:
|
| 19 |
+
st.error(f"模型加载失败: {str(e)}")
|
| 20 |
+
return None
|
| 21 |
+
|
| 22 |
+
def analyze_comments(comments: List[str], classifier) -> List[Dict]:
|
| 23 |
+
"""Analyze a list of comments and return sentiment results"""
|
| 24 |
+
results = []
|
| 25 |
+
for comment in comments:
|
| 26 |
+
prediction = classifier(comment)[0]
|
| 27 |
+
results.append({
|
| 28 |
+
'comment': comment,
|
| 29 |
+
'sentiment': 1 if prediction['label'] == 'LABEL_1' else 0,
|
| 30 |
+
'confidence': prediction['score']
|
| 31 |
+
})
|
| 32 |
+
return results
|
| 33 |
+
|
| 34 |
+
def calculate_star_rating(positive_percent: float) -> int:
|
| 35 |
+
"""Convert positive percentage to star rating (1-5)"""
|
| 36 |
+
if positive_percent >= 80:
|
| 37 |
+
return 5
|
| 38 |
+
elif positive_percent >= 60:
|
| 39 |
+
return 4
|
| 40 |
+
elif positive_percent >= 40:
|
| 41 |
+
return 3
|
| 42 |
+
elif positive_percent >= 20:
|
| 43 |
+
return 2
|
| 44 |
+
return 1
|
| 45 |
+
|
| 46 |
+
def show_sentiment_distribution(positive_percent: float):
|
| 47 |
+
"""Display a pie chart of sentiment distribution"""
|
| 48 |
+
fig, ax = plt.subplots()
|
| 49 |
+
ax.pie([positive_percent, 100-positive_percent],
|
| 50 |
+
labels=['Positive', 'Negative'],
|
| 51 |
+
autopct='%1.1f%%',
|
| 52 |
+
colors=['#4CAF50', '#F44336'])
|
| 53 |
+
ax.axis('equal') # Equal aspect ratio ensures pie is drawn as a circle
|
| 54 |
+
st.pyplot(fig)
|
| 55 |
+
|
| 56 |
+
def main():
|
| 57 |
+
st.set_page_config(page_title="电影评论分析系统", page_icon="🎬")
|
| 58 |
+
|
| 59 |
+
# Custom CSS
|
| 60 |
+
st.markdown("""
|
| 61 |
+
<style>
|
| 62 |
+
.reportview-container {
|
| 63 |
+
background: #f0f2f6;
|
| 64 |
+
}
|
| 65 |
+
.stProgress > div > div > div > div {
|
| 66 |
+
background-color: #4CAF50;
|
| 67 |
+
}
|
| 68 |
+
</style>
|
| 69 |
+
""", unsafe_allow_html=True)
|
| 70 |
+
|
| 71 |
+
# Load model
|
| 72 |
+
classifier = load_model()
|
| 73 |
+
if classifier is None:
|
| 74 |
+
return
|
| 75 |
+
|
| 76 |
+
# Page layout
|
| 77 |
+
st.title("🎬 电影评论批量分析系统")
|
| 78 |
+
st.markdown("""
|
| 79 |
+
### 使用说明:
|
| 80 |
+
1. 上传包含电影评论的CSV文件(需包含'comment'列)
|
| 81 |
+
2. 系统自动分析每条评论的情感倾向
|
| 82 |
+
3. 生成整体评分和分析报告
|
| 83 |
+
""")
|
| 84 |
+
|
| 85 |
+
# Sample file download
|
| 86 |
+
with st.expander("下载示例文件"):
|
| 87 |
+
sample_data = pd.DataFrame({'comment': [
|
| 88 |
+
"This movie was fantastic! The acting was superb.",
|
| 89 |
+
"I didn't like the plot. It was too predictable.",
|
| 90 |
+
"The cinematography was beautiful but the story was weak."
|
| 91 |
+
]})
|
| 92 |
+
st.download_button(
|
| 93 |
+
label="下载示例CSV",
|
| 94 |
+
data=sample_data.to_csv(index=False).encode('utf-8'),
|
| 95 |
+
file_name="sample_reviews.csv",
|
| 96 |
+
mime="text/csv"
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# File upload
|
| 100 |
+
uploaded_file = st.file_uploader("上传CSV文件", type=["csv"])
|
| 101 |
+
|
| 102 |
+
if uploaded_file is not None:
|
| 103 |
+
try:
|
| 104 |
+
df = pd.read_csv(uploaded_file)
|
| 105 |
+
if 'comment' not in df.columns:
|
| 106 |
+
st.error("CSV文件必须包含'comment'列")
|
| 107 |
+
return
|
| 108 |
+
|
| 109 |
+
comments = df['comment'].dropna().tolist()
|
| 110 |
+
|
| 111 |
+
with st.expander("原始数据预览(前5行)"):
|
| 112 |
+
st.dataframe(df.head())
|
| 113 |
+
|
| 114 |
+
if st.button("开始分析", type="primary"):
|
| 115 |
+
if len(comments) > 1000:
|
| 116 |
+
st.warning(f"检测到大量评论 ({len(comments)} 条),分析可能需要较长时间...")
|
| 117 |
+
|
| 118 |
+
with st.spinner("分析中,请稍候..."):
|
| 119 |
+
results = analyze_comments(comments, classifier)
|
| 120 |
+
result_df = pd.DataFrame(results)
|
| 121 |
+
|
| 122 |
+
# Calculate statistics
|
| 123 |
+
positive_count = result_df['sentiment'].sum()
|
| 124 |
+
total_reviews = len(result_df)
|
| 125 |
+
positive_percent = (positive_count / total_reviews) * 100
|
| 126 |
+
star_rating = calculate_star_rating(positive_percent)
|
| 127 |
+
|
| 128 |
+
# Display results
|
| 129 |
+
st.success("分析完成!")
|
| 130 |
+
|
| 131 |
+
# Metrics
|
| 132 |
+
col1, col2, col3 = st.columns(3)
|
| 133 |
+
with col1:
|
| 134 |
+
st.metric("⭐ 综合评分", f"{star_rating} 星")
|
| 135 |
+
with col2:
|
| 136 |
+
st.metric("👍 正面评价", f"{positive_count}/{total_reviews}")
|
| 137 |
+
with col3:
|
| 138 |
+
st.metric("📈 正面比例", f"{positive_percent:.1f}%")
|
| 139 |
+
|
| 140 |
+
# Visualizations
|
| 141 |
+
show_sentiment_distribution(positive_percent)
|
| 142 |
+
|
| 143 |
+
# Sample results
|
| 144 |
+
with st.expander("查看详细分析结果(前10条)"):
|
| 145 |
+
st.dataframe(result_df.head(10))
|
| 146 |
+
|
| 147 |
+
# Download
|
| 148 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
|
| 149 |
+
result_df.to_csv(tmp.name, index=False)
|
| 150 |
+
with open(tmp.name, "rb") as f:
|
| 151 |
+
st.download_button(
|
| 152 |
+
label="下载完整结果",
|
| 153 |
+
data=f,
|
| 154 |
+
file_name="analysis_results.csv",
|
| 155 |
+
mime="text/csv"
|
| 156 |
+
)
|
| 157 |
+
os.unlink(tmp.name)
|
| 158 |
+
|
| 159 |
+
except Exception as e:
|
| 160 |
+
st.error(f"处理文件时出错: {str(e)}")
|
| 161 |
+
|
| 162 |
+
if __name__ == "__main__":
|
| 163 |
+
main()
|
| 164 |
+
Key improvements made:
|
| 165 |
+
|
| 166 |
+
Added model caching
|
| 167 |
+
|
| 168 |
+
Included a sample file download
|
| 169 |
+
|
| 170 |
+
Added a pie chart visualization
|
| 171 |
+
|
| 172 |
+
Better organized the code into functions
|
| 173 |
+
|
| 174 |
+
Added type hints
|
| 175 |
+
|
| 176 |
+
Improved error handling and user feedback
|
| 177 |
+
|
| 178 |
+
Added warning for large files
|
| 179 |
+
|
| 180 |
+
Would you like me to explain any specific part of these improvements in more detail?
|
| 181 |
+
|
| 182 |
+
我不需要优化,在源代码上添加以下几步,合并CSV里的每行评论,合并成一个文本,利用huggingface上的模型keyphrase_extractor = pipeline(
|
| 183 |
+
"token-classification",
|
| 184 |
+
model="ml6team/keyphrase-extraction-distilbert-inspec",
|
| 185 |
+
aggregation_strategy="simple" # 用于合并子词/标记
|
| 186 |
+
和summarizer = pipeline("summarization",
|
| 187 |
+
model="facebook/bart-large-cnn")
|
| 188 |
+
进行提取5个关键词,和生成总结,我是在huggingface上设计app
|
| 189 |
+
我将在你的原始代码基础上添加关键词提取和总结生成功能。以下是修改后的代码,保留了原有功能,同时增加了你要求的新特性:
|
| 190 |
+
|
| 191 |
+
python
|
| 192 |
+
import streamlit as st
|
| 193 |
+
import pandas as pd
|
| 194 |
+
from transformers import pipeline
|
| 195 |
+
import tempfile
|
| 196 |
+
import os
|
| 197 |
+
|
| 198 |
+
def calculate_star_rating(positive_percent):
|
| 199 |
+
"""将正面评价百分比转换为星级评分"""
|
| 200 |
+
if positive_percent >= 80:
|
| 201 |
+
return 5
|
| 202 |
+
elif positive_percent >= 60:
|
| 203 |
+
return 4
|
| 204 |
+
elif positive_percent >= 40:
|
| 205 |
+
return 3
|
| 206 |
+
elif positive_percent >= 20:
|
| 207 |
+
return 2
|
| 208 |
+
else:
|
| 209 |
+
return 1
|
| 210 |
|
| 211 |
def main():
|
| 212 |
+
st.set_page_config(page_title="电影评论分析系统", page_icon="🎬")
|
| 213 |
+
|
| 214 |
+
# 自定义样式
|
| 215 |
+
st.markdown("""
|
| 216 |
+
<style>
|
| 217 |
+
.reportview-container {
|
| 218 |
+
background: #f0f2f6;
|
| 219 |
+
}
|
| 220 |
+
.stProgress > div > div > div > div {
|
| 221 |
+
background-color: #4CAF50;
|
| 222 |
+
}
|
| 223 |
+
</style>
|
| 224 |
+
""", unsafe_allow_html=True)
|
| 225 |
+
|
| 226 |
+
# 模型加载
|
| 227 |
+
with st.spinner("正在加载所有模型,这可能需要几分钟..."):
|
| 228 |
+
try:
|
| 229 |
+
# 情感分析模型
|
| 230 |
+
classifier = pipeline(
|
| 231 |
+
"text-classification",
|
| 232 |
+
model="KeonBlackwell/movie_sentiment_model",
|
| 233 |
+
tokenizer="distilbert-base-uncased"
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# 关键词提取模型
|
| 237 |
+
keyphrase_extractor = pipeline(
|
| 238 |
+
"token-classification",
|
| 239 |
+
model="ml6team/keyphrase-extraction-distilbert-inspec",
|
| 240 |
+
aggregation_strategy="simple"
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
# 摘要生成模型
|
| 244 |
+
summarizer = pipeline("summarization",
|
| 245 |
+
model="facebook/bart-large-cnn")
|
| 246 |
+
|
| 247 |
+
except Exception as e:
|
| 248 |
+
st.error(f"模型加载失败: {str(e)}")
|
| 249 |
+
return
|
| 250 |
+
|
| 251 |
+
# 页面布局
|
| 252 |
+
st.title("🎬 电影评论批量分析系统")
|
| 253 |
+
st.markdown("""
|
| 254 |
+
### 使用说明:
|
| 255 |
+
1. 上传包含电影评论的CSV文件(需包含'comment'列)
|
| 256 |
+
2. 系统自动分析每条评论的情感倾向
|
| 257 |
+
3. 生成整体评分、关键词提取和总结报告
|
| 258 |
+
""")
|
| 259 |
|
| 260 |
+
# 文件上传
|
| 261 |
+
uploaded_file = st.file_uploader("上传CSV文件", type=["csv"])
|
| 262 |
+
|
| 263 |
+
if uploaded_file is not None:
|
| 264 |
+
# 读取数据
|
| 265 |
+
try:
|
| 266 |
+
df = pd.read_csv(uploaded_file)
|
| 267 |
+
if 'comment' not in df.columns:
|
| 268 |
+
st.error("CSV文件必须包含'comment'列")
|
| 269 |
+
return
|
| 270 |
+
|
| 271 |
+
comments = df['comment'].tolist()
|
| 272 |
+
except Exception as e:
|
| 273 |
+
st.error(f"文件读取失败: {str(e)}")
|
| 274 |
+
return
|
| 275 |
|
| 276 |
+
# 显示预览
|
| 277 |
+
with st.expander("原始数据预览(前5行)"):
|
| 278 |
+
st.dataframe(df.head())
|
|
|
|
|
|
|
| 279 |
|
| 280 |
+
if st.button("开始分���"):
|
| 281 |
+
# 进度条设置
|
| 282 |
+
progress_bar = st.progress(0)
|
| 283 |
+
status_text = st.empty()
|
| 284 |
+
|
| 285 |
+
results = []
|
| 286 |
+
total = len(comments)
|
| 287 |
+
|
| 288 |
+
# 批量预测
|
| 289 |
+
try:
|
| 290 |
+
# 情感分析
|
| 291 |
+
for i, comment in enumerate(comments):
|
| 292 |
+
progress = (i+1)/total
|
| 293 |
+
progress_bar.progress(progress)
|
| 294 |
+
status_text.text(f"正在分析情感 {i+1}/{total} 条评论...")
|
| 295 |
+
|
| 296 |
+
prediction = classifier(comment)[0]
|
| 297 |
+
results.append({
|
| 298 |
+
'comment': comment,
|
| 299 |
+
'sentiment': 1 if prediction['label'] == 'LABEL_1' else 0,
|
| 300 |
+
'confidence': prediction['score']
|
| 301 |
+
})
|
| 302 |
+
|
| 303 |
+
# 转换为DataFrame
|
| 304 |
+
result_df = pd.DataFrame(results)
|
| 305 |
+
|
| 306 |
+
# 计算统计指标
|
| 307 |
+
positive_count = result_df['sentiment'].sum()
|
| 308 |
+
total_reviews = len(result_df)
|
| 309 |
+
positive_percent = (positive_count / total_reviews) * 100
|
| 310 |
+
star_rating = calculate_star_rating(positive_percent)
|
| 311 |
+
|
| 312 |
+
# 显示结果
|
| 313 |
+
st.success("情感分析完成!")
|
| 314 |
+
|
| 315 |
+
# 评分展示
|
| 316 |
+
col1, col2, col3 = st.columns(3)
|
| 317 |
+
with col1:
|
| 318 |
+
st.metric("⭐ 综合评分", f"{star_rating} 星")
|
| 319 |
+
with col2:
|
| 320 |
+
st.metric("👍 正面评价", f"{positive_count}/{total_reviews}")
|
| 321 |
+
with col3:
|
| 322 |
+
st.metric("📈 正面比例", f"{positive_percent:.1f}%")
|
| 323 |
+
|
| 324 |
+
# 进度条可视化
|
| 325 |
+
st.progress(positive_percent/100)
|
| 326 |
+
|
| 327 |
+
# 显示示例结果
|
| 328 |
+
with st.expander("查看详细分析结果(前10条)"):
|
| 329 |
+
st.dataframe(result_df.head(10))
|
| 330 |
+
|
| 331 |
+
# 关键词提取和总结
|
| 332 |
+
st.subheader("📌 评论关键词提取与总结")
|
| 333 |
+
|
| 334 |
+
# 合并所有评论为一个文本
|
| 335 |
+
combined_text = " ".join(comments)
|
| 336 |
+
|
| 337 |
+
# 关键词提取
|
| 338 |
+
with st.spinner("正在提取关键词..."):
|
| 339 |
+
keyphrases = keyphrase_extractor(combined_text)
|
| 340 |
+
# 按置信度排序并取前5个
|
| 341 |
+
top_keyphrases = sorted(keyphrases, key=lambda x: x['score'], reverse=True)[:5]
|
| 342 |
+
|
| 343 |
+
# 显示关键词
|
| 344 |
+
st.markdown("**🔍 提取的关键词:**")
|
| 345 |
+
cols = st.columns(5)
|
| 346 |
+
for i, phrase in enumerate(top_keyphrases):
|
| 347 |
+
cols[i].markdown(f"""
|
| 348 |
+
<div style="
|
| 349 |
+
border: 1px solid #ddd;
|
| 350 |
+
border-radius: 5px;
|
| 351 |
+
padding: 10px;
|
| 352 |
+
text-align: center;
|
| 353 |
+
margin: 5px;
|
| 354 |
+
background-color: #f9f9f9;
|
| 355 |
+
">
|
| 356 |
+
<b>{phrase['word']}</b><br>
|
| 357 |
+
<small>置信度: {phrase['score']:.2f}</small>
|
| 358 |
+
</div>
|
| 359 |
+
""", unsafe_allow_html=True)
|
| 360 |
+
|
| 361 |
+
# 生成总结
|
| 362 |
+
with st.spinner("正在生成评论总结..."):
|
| 363 |
+
# 限制文本长度以避免模型限制
|
| 364 |
+
max_length = 1024 # 模型的最大输入长度
|
| 365 |
+
if len(combined_text) > max_length:
|
| 366 |
+
combined_text = combined_text[:max_length]
|
| 367 |
+
|
| 368 |
+
summary = summarizer(combined_text,
|
| 369 |
+
max_length=130,
|
| 370 |
+
min_length=30,
|
| 371 |
+
do_sample=False)
|
| 372 |
+
|
| 373 |
+
# 显示总结
|
| 374 |
+
st.markdown("**📝 评论总结:**")
|
| 375 |
+
st.info(summary[0]['summary_text'])
|
| 376 |
+
|
| 377 |
+
# 生成可下载文件
|
| 378 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
|
| 379 |
+
result_df.to_csv(tmp.name, index=False)
|
| 380 |
+
with open(tmp.name, "rb") as f:
|
| 381 |
+
st.download_button(
|
| 382 |
+
label="下载完整结果",
|
| 383 |
+
data=f,
|
| 384 |
+
file_name="analysis_results.csv",
|
| 385 |
+
mime="text/csv"
|
| 386 |
+
)
|
| 387 |
+
os.unlink(tmp.name)
|
| 388 |
+
|
| 389 |
+
except Exception as e:
|
| 390 |
+
st.error(f"分析过程中出现错误: {str(e)}")
|
| 391 |
+
finally:
|
| 392 |
+
progress_bar.empty()
|
| 393 |
+
status_text.empty()
|
| 394 |
|
| 395 |
if __name__ == "__main__":
|
| 396 |
main()
|