--- library_name: transformers pipeline_tag: image-text-to-text inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - baidu/ERNIE-4.5-VL-424B-A47B-PT --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [baidu/ERNIE-4.5-VL-424B-A47B-PT](https://huggingface.co/baidu/ERNIE-4.5-VL-424B-A47B-PT). ### Example usage: ```python import numpy as np import torch import transformers from PIL import Image from transformers import AutoModel, AutoModelForCausalLM, AutoProcessor, AutoTokenizer model_id = "tiny-random/ernie-4.5-vl-moe" processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True,) model = AutoModel.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="cuda", trust_remote_code=True, ) model.add_image_preprocess(processor) image = Image.fromarray(np.random.randint(0, 255, (224, 224, 3), dtype=np.uint8), 'RGB') inputs = processor('What is this: <|IMAGE_START|><|image@placeholder|><|IMAGE_END|>', images=[image]).to('cuda') # print(inputs) generated_ids = model.generate(**inputs, max_new_tokens=4, use_cache=False) output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False) print(output_text) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, set_seed, ) source_model_id = "baidu/ERNIE-4.5-VL-424B-A47B-PT" save_folder = "/tmp/tiny-random/ernie-4.5-vl-moe" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) for k, v in config_json['auto_map'].items(): config_json['auto_map'][k] = f'{source_model_id}--{v}' config_json['hidden_size'] = 8 config_json['intermediate_size'] = 32 # config_json['head_dim'] = 32 config_json['num_attention_heads'] = 4 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 4 config_json['tie_word_embeddings'] = False config_json['use_cache'] = True config_json['pixel_hidden_size'] = 16 config_json['moe_layer_start_index'] = 1 config_json['moe_intermediate_size'] = [32, 32] config_json['moe_num_experts'] = [32, 32] config_json['vision_config']['depth'] = 2 config_json['vision_config']['embed_dim'] = 16 config_json['vision_config']['hidden_size'] = 16 config_json['vision_config']['num_heads'] = 1 with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True,) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) model.generation_config.do_sample = True print(model.generation_config) model = model.cpu() with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) def modify_automap(path, source_model_id): import json with open(path, 'r', encoding='utf-8') as f: content = json.load(f) automap = {} if content.get('auto_map', None) is not None: for key, value in content.get('auto_map').items(): if isinstance(value, str): value = source_model_id + '--' + value.split('--')[-1] else: value = [(source_model_id + '--' + v.split('--')[-1]) if '.' in str(v) else v for v in value] automap[key] = value with open(path, 'w', encoding='utf-8') as f: json.dump({**content, 'auto_map': automap}, f, indent=2) modify_automap(f"{save_folder}/config.json", source_model_id) modify_automap(f'{save_folder}/processor_config.json', source_model_id) modify_automap(f'{save_folder}/preprocessor_config.json', source_model_id) modify_automap(f'{save_folder}/tokenizer_config.json', source_model_id) for python_file in Path(save_folder).glob('*.py'): python_file.unlink() ``` ### Printing the model: ```text Ernie4_5_VLMoeForConditionalGeneration( (model): Ernie4_5_Model( (embed_tokens): Embedding(103424, 8) (layers): ModuleList( (0): Ernie4_5_DecoderLayer( (self_attn): Ernie4_5_Attention( (q_proj): Linear(in_features=8, out_features=8, bias=False) (k_proj): Linear(in_features=8, out_features=8, bias=False) (v_proj): Linear(in_features=8, out_features=8, bias=False) (o_proj): Linear(in_features=8, out_features=8, bias=False) (rotary_emb): RopeEmbedding() ) (mlp): Ernie4_5_MLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) ) (input_layernorm): RMSNorm() (post_attention_layernorm): RMSNorm() (residual_add1): FusedDropoutImpl( (dropout): Dropout(p=0.0, inplace=False) ) (residual_add2): FusedDropoutImpl( (dropout): Dropout(p=0.0, inplace=False) ) ) (1): Ernie4_5_DecoderLayer( (self_attn): Ernie4_5_Attention( (q_proj): Linear(in_features=8, out_features=8, bias=False) (k_proj): Linear(in_features=8, out_features=8, bias=False) (v_proj): Linear(in_features=8, out_features=8, bias=False) (o_proj): Linear(in_features=8, out_features=8, bias=False) (rotary_emb): RopeEmbedding() ) (mlp): MOEAllGatherLayerV2( (gate): TopKGate() (experts): ModuleList( (0-63): 64 x Ernie4_5_MoeMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) ) ) (moe_statics): MoEStatics() ) (input_layernorm): RMSNorm() (post_attention_layernorm): RMSNorm() (residual_add1): FusedDropoutImpl( (dropout): Dropout(p=0.0, inplace=False) ) (residual_add2): FusedDropoutImpl( (dropout): Dropout(p=0.0, inplace=False) ) ) ) (norm): RMSNorm() (resampler_model): VariableResolutionResamplerModel( (spatial_linear): Sequential( (0): Linear(in_features=64, out_features=64, bias=True) (1): GELU(approximate='none') (2): Linear(in_features=64, out_features=64, bias=True) (3): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (temporal_linear): Sequential( (0): Linear(in_features=128, out_features=64, bias=True) (1): GELU(approximate='none') (2): Linear(in_features=64, out_features=64, bias=True) (3): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (mlp): Linear(in_features=64, out_features=8, bias=True) (after_norm): RMSNorm() ) ) (lm_head): Linear(in_features=8, out_features=103424, bias=False) (vision_model): DFNRopeVisionTransformerPreTrainedModel( (patch_embed): PatchEmbed( (proj): Linear(in_features=588, out_features=16, bias=False) ) (rotary_pos_emb): VisionRotaryEmbedding() (blocks): ModuleList( (0-1): 2 x DFNRopeVisionBlock( (norm1): LayerNorm((16,), eps=1e-06, elementwise_affine=True) (norm2): LayerNorm((16,), eps=1e-06, elementwise_affine=True) (attn): VisionAttention( (qkv): Linear(in_features=16, out_features=48, bias=True) (proj): Linear(in_features=16, out_features=16, bias=True) ) (mlp): VisionMlp( (fc1): Linear(in_features=16, out_features=64, bias=True) (act): QuickGELUActivation() (fc2): Linear(in_features=64, out_features=16, bias=True) ) ) ) (ln): LayerNorm((16,), eps=1e-06, elementwise_affine=True) ) ) ```