File size: 45,390 Bytes
e46d24c
 
 
 
44eb9a4
e46d24c
 
 
 
 
 
e0ce601
e8eac59
e0ce601
e8eac59
e0ce601
e8eac59
e0ce601
 
e8eac59
67457f4
e0ce601
67457f4
44eb9a4
67457f4
e0ce601
 
 
 
e8eac59
c2f2614
 
 
e8eac59
c2f2614
 
e8eac59
c2f2614
 
e8eac59
c2f2614
 
e8eac59
 
e0ce601
c2f2614
e0ce601
e8eac59
e0ce601
e8eac59
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
 
e0ce601
 
 
 
 
c2f2614
e0ce601
 
 
 
 
 
 
 
 
e8eac59
 
e0ce601
 
 
 
e8eac59
e0ce601
 
 
 
 
 
 
 
 
c2f2614
e0ce601
 
 
 
c2f2614
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
 
e0ce601
 
 
 
 
 
c2f2614
e0ce601
c2f2614
e0ce601
 
c2f2614
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8eac59
e0ce601
e8eac59
c2f2614
e0ce601
 
c2f2614
 
 
e0ce601
c2f2614
 
e0ce601
 
c2f2614
e0ce601
c2f2614
 
e0ce601
 
 
 
c2f2614
 
e0ce601
c2f2614
 
 
e0ce601
c2f2614
 
e0ce601
 
c2f2614
 
 
 
 
e0ce601
c2f2614
e0ce601
e8eac59
 
e0ce601
e8eac59
 
e0ce601
c2f2614
 
 
e0ce601
c2f2614
e0ce601
c2f2614
 
e0ce601
c2f2614
e8eac59
e0ce601
 
c2f2614
e8eac59
e0ce601
e8eac59
 
 
e0ce601
e8eac59
 
e0ce601
 
 
c2f2614
 
 
e0ce601
c2f2614
 
e0ce601
 
 
 
 
c2f2614
e0ce601
 
 
c2f2614
 
 
 
e0ce601
c2f2614
 
e0ce601
c2f2614
 
e0ce601
c2f2614
 
 
e0ce601
c2f2614
e0ce601
c2f2614
 
e0ce601
c2f2614
 
e0ce601
 
e8eac59
c2f2614
 
 
 
 
 
 
 
e0ce601
e8eac59
 
c2f2614
e0ce601
 
 
 
c2f2614
e0ce601
 
c2f2614
e0ce601
 
c2f2614
 
e0ce601
c2f2614
 
e0ce601
e8eac59
c2f2614
e0ce601
 
e8eac59
c2f2614
 
e0ce601
c2f2614
e0ce601
c2f2614
 
 
 
e8eac59
c2f2614
e0ce601
c2f2614
 
e0ce601
 
c2f2614
e0ce601
 
 
 
 
 
 
 
 
 
 
 
e8eac59
c2f2614
e0ce601
c2f2614
 
 
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
e0ce601
e8eac59
c2f2614
 
 
e0ce601
e8eac59
c2f2614
 
e0ce601
 
 
c2f2614
e0ce601
e8eac59
 
e0ce601
e8eac59
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8eac59
e0ce601
 
 
 
 
 
 
 
 
 
 
c2f2614
e0ce601
 
c2f2614
e0ce601
 
c2f2614
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
e0ce601
 
 
 
c2f2614
e0ce601
 
 
 
 
 
 
 
 
c2f2614
 
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
e8eac59
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8eac59
e0ce601
 
 
c2f2614
e0ce601
 
 
e8eac59
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
e0ce601
 
 
 
 
c2f2614
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
e0ce601
c2f2614
e0ce601
e8eac59
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
e0ce601
 
 
 
 
 
c2f2614
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
 
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
 
e0ce601
c2f2614
e0ce601
c2f2614
e0ce601
c2f2614
e0ce601
 
 
c2f2614
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
e0ce601
 
 
 
c2f2614
e0ce601
 
c2f2614
e0ce601
c2f2614
e0ce601
c2f2614
e0ce601
c2f2614
 
e0ce601
 
 
c2f2614
 
e0ce601
c2f2614
e0ce601
c2f2614
 
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
 
e0ce601
c2f2614
e0ce601
c2f2614
 
e0ce601
 
 
 
 
 
 
 
 
c2f2614
e0ce601
 
 
 
c2f2614
e0ce601
 
 
 
 
 
 
 
 
 
c2f2614
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
 
e0ce601
 
 
 
 
 
 
c2f2614
e0ce601
c2f2614
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
e0ce601
c2f2614
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8eac59
 
e0ce601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2614
e0ce601
e8eac59
e0ce601
 
 
 
 
1d47972
e0ce601
c2f2614
44eb9a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
---
license: mit
datasets:
- tuandunghcmut/normal_dataset
- tuandunghcmut/coding-mcq-reasoning
language:
- en
base_model:
- unsloth/Qwen2.5-Coder-1.5B-Instruct
pipeline_tag: text-generation
---
# Qwen25_Coder_MultipleChoice

*   This project focuses on distilling YAML-based structured multi-step reasoning capabilities from the GPT-4o teacher model into the smaller Qwen2.5 Coder 1.5B-Instruct LLM.

*   This document provides guidance on getting started with `tuandunghcmut/Qwen25_Coder_MultipleChoice`, a model fine-tuned for multiple-choice coding questions.

*   A demonstration notebook is available on Google Colab (click the badge below). Please note that the training code has been omitted from this notebook. It is intended solely for testing and inference using the latest checkpoint.
    [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://drive.google.com/file/d/1Q4jtRjIkFWIAM82pAg4OBPCLjpQ8ndpI/view?usp=sharing)

*   Note: The initial training was conducted on a dataset with errors rather than a perfectly preprocessed one—<span style="color:red;">**garbage in, garbage out**</span>. As a result, while the model successfully adheres to the desired YAML format and demonstrates structured reasoning, its performance remains <span style="color:red;">**unstable**</span>. Future iterations will focus on retraining with a <span style="color:red;">**more extensive, high-quality dataset**</span> to improve stability and accuracy.

*   Apologies for the current state of the project. The initial version has some inconsistencies due to training on the old dataset, [tuandunghcmut/normal_dataset](https://huggingface.co/datasets/tuandunghcmut/normal_dataset). Future plans include refactoring the code into a more structured format, expanding the dataset to the new one, [tuandunghcmut/coding-mcq-reasoning](https://huggingface.co/datasets/tuandunghcmut/coding-mcq-reasoning), and retraining the model using distributed training for improved scalability. Additionally, I plan to train on a larger, high-quality dataset to enhance performance and ensure better stability.

*   The guide below provides an explanation of the code presented in the notebook. I hope you will understand my ideas and the structure of the code.

## Installation

First, install the required dependencies:

```bash
# Install core dependencies
pip install transformers torch pandas

# For faster inference (important)
pip install unsloth accelerate bitsandbytes

# Flash Attention (highly recommended for speed)
pip install flash-attn --no-build-isolation

# For dataset handling and YAML parsing
pip install datasets pyyaml
```

## Key Classes

The project provides several key classes for working with the model:

### 1. QwenModelHandler
```python
class QwenModelHandler:
    """Handler for Qwen models with inference and saving capabilities using Unsloth"""
    
    def __init__(self, model_name="unsloth/Qwen2.5-7B", max_seq_length=768, 
                 quantization=None, device_map="auto", cache_dir=None):
        """
        Initialize model and tokenizer using Unsloth
        
        Args:
            model_name: Name or path of the model (preferably an unsloth model)
            max_seq_length: Maximum sequence length for the model
            quantization: Quantization type (None, '4bit', '8bit') - for compatibility
            device_map: Device mapping strategy
            cache_dir: Cache directory for models
        """
```

This class handles the core model operations:
- Model loading and initialization
- Text generation with streaming support
- Perplexity calculation
- Model saving and pushing to HuggingFace Hub

### 2. PromptCreator
```python
class PromptCreator:
    """Creates and formats prompts for multiple choice questions"""
    
    # Prompt types
    BASIC = "basic"  # Simple answer-only format
    YAML_REASONING = "yaml"  # YAML formatted reasoning
    TEACHER_REASONED = "teacher"  # Same YAML format but using teacher completions
```

This class manages prompt creation with three modes:
- Basic: Simple answer-only format
- YAML Reasoning: Structured reasoning in YAML format
- Teacher Reasoned: YAML format with teacher completions for training

### 3. ResponseParser
```python
class ResponseParser:
    """Parser for model responses with support for different formats"""
    
    # Parser modes
    BASIC = "basic"  # Extract single letter answer
    YAML = "yaml"    # Parse YAML formatted response with reasoning
```

This class handles response parsing:
- Extracts answers from model responses
- Parses YAML-formatted reasoning
- Supports both basic and YAML formats

### 4. MultipleChoiceTester
```python
class MultipleChoiceTester:
    """Framework for testing Qwen models on multiple choice questions"""
    
    def __init__(self, model_handler, prompt_creator=None):
        """
        Initialize with model handler and prompt configuration
        
        Args:
            model_handler: The QwenModelHandler instance
            prompt_creator: Optional PromptCreator instance
        """
```

This class provides a complete testing framework:
- Single example inference
- Batch processing
- Dataset evaluation
- Performance metrics tracking
- Results saving and visualization

## Full Class Implementations

<details>
<summary>Click to expand/collapse full class implementations</summary>

### 1. QwenModelHandler
```python
class QwenModelHandler:
    """Handler for Qwen models with inference and saving capabilities using Unsloth"""
    
    def __init__(self, model_name="unsloth/Qwen2.5-7B", max_seq_length=768, 
                 quantization=None, device_map="auto", cache_dir=None):
        self.model_name = model_name
        self.max_seq_length = max_seq_length
        self.device_map = device_map
        self.quantization = quantization
        self.cache_dir = cache_dir
        
        # Convert quantization parameter to load_in_4bit parameter for Unsloth
        self.load_in_4bit = quantization == "4bit"
        
        # Load tokenizer and model
        self.tokenizer, self.model = self._load_model()
        self.response_parser = ResponseParser()
        
    def _load_model(self):
        """Load model and tokenizer with Unsloth for optimization"""
        from unsloth import FastLanguageModel
        import torch
        
        print(f"Loading {self.model_name} with Unsloth, max_seq_length={self.max_seq_length}")
        
        # Set dtype based on hardware
        dtype = None  # None for auto detection
        
        # Load model and tokenizer with Unsloth
        model, tokenizer = FastLanguageModel.from_pretrained(
            model_name=self.model_name,
            max_seq_length=self.max_seq_length,
            dtype=dtype,
            load_in_4bit=self.load_in_4bit,
            cache_dir=self.cache_dir,
        )
        
        return tokenizer, model
      
    def generate_with_streaming(self, prompt, temperature=0.7, max_tokens=1024, stream=True):
        """Generate completion with optional streaming using Unsloth's optimized inference"""
        # Enable faster inference
        from unsloth import FastLanguageModel
        FastLanguageModel.for_inference(self.model)
        
        # Format as chat
        messages = [{"role": "user", "content": prompt}]
        chat_text = self.tokenizer.apply_chat_template(
            messages, 
            tokenize=False, 
            add_generation_prompt=True
        )
        
        # Tokenize input
        model_inputs = self.tokenizer([chat_text], return_tensors="pt").to(self.model.device)
        
        # Generate with streaming if requested
        if stream:
            from transformers import TextIteratorStreamer
            import threading
            
            # Set up streamer
            streamer = TextIteratorStreamer(
                self.tokenizer,
                skip_prompt=True,
                skip_special_tokens=True
            )
            
            # Start generation in a thread
            generation_kwargs = {
                "input_ids": model_inputs.input_ids,
                "attention_mask": model_inputs.attention_mask,
                "temperature": temperature,
                "max_new_tokens": max_tokens,
                "streamer": streamer,
                "do_sample": temperature > 0.0,
                "use_cache": True,
                "min_p": 0.1 if temperature > 0.0 else None,
            }
            
            thread = threading.Thread(target=self.model.generate, kwargs=generation_kwargs)
            thread.start()
            
            return streamer
        else:
            # Generate without streaming
            generated_ids = self.model.generate(
                input_ids=model_inputs.input_ids,
                attention_mask=model_inputs.attention_mask,
                temperature=temperature,
                max_new_tokens=max_tokens,
                do_sample=temperature > 0.0,
                use_cache=True,
                min_p=0.1 if temperature > 0.0 else None,
            )
            
            # Decode the generated text
            generated_text = self.tokenizer.decode(
                generated_ids[0][model_inputs.input_ids.shape[1]:],
                skip_special_tokens=True
            )
            
            return generated_text
            
    def calculate_perplexity(self, prompt, answer, temperature=0.0):
        """Calculate perplexity for a prompt and answer pair"""
        import torch
        
        # Format chat for perplexity calculation
        messages = [
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": answer}
        ]
        chat_text = self.tokenizer.apply_chat_template(
            messages, 
            tokenize=False
        )
        
        # Tokenize the text
        encodings = self.tokenizer(chat_text, return_tensors="pt").to(self.model.device)
        
        # Calculate loss
        with torch.no_grad():
            outputs = self.model(**encodings, labels=encodings.input_ids)
            
        # Get loss and calculate perplexity
        neg_log_likelihood = outputs.loss.item()
        perplexity = torch.exp(torch.tensor(neg_log_likelihood)).item()
        
        return perplexity
      
    def save_model(self, output_dir, save_method="lora"):
        """Save model to disk using Unsloth's optimized methods"""
        import os
        
        os.makedirs(output_dir, exist_ok=True)
        
        # Use Unsloth's saving methods
        if save_method == "lora":
            self.model.save_pretrained(output_dir)
            self.tokenizer.save_pretrained(output_dir)
        elif save_method == "merged_16bit":
            self.model.save_pretrained_merged(output_dir, self.tokenizer, save_method="merged_16bit")
        elif save_method == "merged_4bit":
            self.model.save_pretrained_merged(output_dir, self.tokenizer, save_method="merged_4bit")
        elif save_method == "gguf":
            self.model.save_pretrained_gguf(output_dir, self.tokenizer, quantization_method="q4_k_m")
        else:
            raise ValueError(f"Unknown save method: {save_method}")
            
        print(f"Model saved to {output_dir} using method {save_method}")
        return output_dir
        
    def push_to_hub(self, repo_id, token=None, save_method="lora", private=False):
        """Push model to Hugging Face Hub using Unsloth's optimized methods"""
        if save_method == "lora":
            self.model.push_to_hub_merged(repo_id, self.tokenizer, save_method="lora", token=token)
        elif save_method == "merged_16bit":
            self.model.push_to_hub_merged(repo_id, self.tokenizer, save_method="merged_16bit", token=token)
        elif save_method == "merged_4bit":
            self.model.push_to_hub_merged(repo_id, self.tokenizer, save_method="merged_4bit", token=token)
        elif save_method == "gguf":
            self.model.push_to_hub_gguf(
                repo_id, 
                self.tokenizer, 
                quantization_method=["q4_k_m", "q5_k_m"], 
                token=token
            )
        else:
            raise ValueError(f"Unknown save method: {save_method}")
        
        print(f"Model successfully pushed to: https://huggingface.co/{repo_id}")
        return f"https://huggingface.co/{repo_id}"
```

### 2. PromptCreator
```python
class PromptCreator:
    """Creates and formats prompts for multiple choice questions"""
    
    # Prompt types
    BASIC = "basic"  # Simple answer-only format
    YAML_REASONING = "yaml"  # YAML formatted reasoning
    TEACHER_REASONED = "teacher"  # Same YAML format but using teacher completions

    def __init__(self, prompt_type=BASIC):
        if prompt_type == self.TEACHER_REASONED:
            prompt_type = self.YAML_REASONING
        self.prompt_type = prompt_type
        self.original_type = prompt_type

    def format_choices(self, choices):
        """Format choices as a lettered list"""
        return "\n".join(
            [f"{chr(65 + i)}. {choice}" for i, choice in enumerate(choices)]
        )

    def get_max_letter(self, choices):
        """Get the maximum letter based on number of choices"""
        return chr(65 + len(choices) - 1)

    def create_inference_prompt(self, question, choices):
        """Create a prompt for inference based on current prompt type"""
        formatted_choices = self.format_choices(choices)
        max_letter = self.get_max_letter(choices)

        if self.prompt_type == self.YAML_REASONING:
            return self._create_yaml_prompt(question, formatted_choices, max_letter)
        else:
            return self._create_basic_prompt(question, formatted_choices, max_letter)

    def _create_basic_prompt(self, question, formatted_choices, max_letter):
        """Create a basic prompt asking for just the answer letter"""
        return f"""
QUESTION:
{question}

CHOICES:
{formatted_choices}

Answer with a single letter from A through {max_letter} without any additional explanation or commentary.
"""

    def _create_yaml_prompt(self, question, formatted_choices, max_letter):
        """Create a prompt requesting YAML-formatted reasoning"""
        return f"""
QUESTION:
{question}

CHOICES:
{formatted_choices}

Analyze this question step-by-step and provide a detailed explanation.
Your response MUST be in YAML format as follows:

understanding: |
  <your understanding of what the question is asking>
analysis: |
  <your analysis of each option>
reasoning: |
  <your step-by-step reasoning process>
conclusion: |
  <your final conclusion>
answer: <single letter A through {max_letter}>

The answer field MUST contain ONLY a single character letter.
"""

    def create_training_prompt(self, question, choices):
        """Create a prompt for training with the current prompt type"""
        formatted_choices = self.format_choices(choices)
        max_letter = self.get_max_letter(choices)

        if self.prompt_type == self.YAML_REASONING:
            return self._create_yaml_training_prompt(
                question, formatted_choices, max_letter
            )
        else:
            return self._create_basic_training_prompt(
                question, formatted_choices, max_letter
            )

    def _create_basic_training_prompt(self, question, formatted_choices, max_letter):
        """Create a basic training prompt"""
        return f"""
QUESTION:
{question}

CHOICES:
{formatted_choices}

The answer is a single letter (A, B, C, etc.). Only provide ONE character as your answer:
"""

    def _create_yaml_training_prompt(self, question, formatted_choices, max_letter):
        """Create a YAML-formatted training prompt"""
        return f"""
QUESTION:
{question}

CHOICES:
{formatted_choices}

Analyze this question step-by-step and provide a detailed explanation.
Follow the YAML format in your response:

understanding: |
  <your understanding of the question>
analysis: |
  <your analysis of each option>
reasoning: |
  <your reasoning about the correct answer>
conclusion: |
  <your final conclusion>
answer: <single letter A through {max_letter}>
"""

    def set_prompt_type(self, prompt_type):
        """Set the prompt type"""
        self.original_type = prompt_type
        if prompt_type == self.TEACHER_REASONED:
            pass
        self.prompt_type = prompt_type
        return self
        
    def is_teacher_mode(self):
        """Check if we're using teacher mode"""
        return self.original_type == self.TEACHER_REASONED
```

### 3. ResponseParser
```python
class ResponseParser:
    """Parser for model responses with support for different formats"""
    
    # Parser modes
    BASIC = "basic"  # Extract single letter answer
    YAML = "yaml"    # Parse YAML formatted response with reasoning
    
    def __init__(self, parser_mode=BASIC):
        self.parser_mode = parser_mode
    
    def parse(self, response_text):
        """Parse the model's response according to the current mode"""
        if self.parser_mode == self.YAML:
            return self._parse_yaml_response(response_text)
        else:
            return self._parse_basic_response(response_text)
    
    def _parse_basic_response(self, response_text):
        """Parse basic response looking for a letter answer"""
        import re
        
        # Try to extract a single letter answer (A-Z)
        answer_match = re.search(r"(?:^|\s)([A-Z])(?:\s|$|\.)", response_text)
        if answer_match:
            answer = answer_match.group(1)
        else:
            # Take first character if it's a letter
            if response_text and response_text[0].isalpha():
                answer = response_text[0].upper()
            else:
                answer = None
        
        # For basic mode, we don't extract detailed reasoning
        reasoning = ""
        
        return answer, reasoning
    
    def _parse_yaml_response(self, response_text):
        """Parse YAML formatted response extracting answer and reasoning"""
        import re
        import yaml
        
        # First try to find answer in YAML format
        yaml_match = re.search(r"answer:\s*([A-Z])", response_text)
        if yaml_match:
            answer = yaml_match.group(1)
        else:
            # Fall back to basic extraction if YAML parsing fails
            answer_match = re.search(r"(?:^|\s)([A-Z])(?:\s|$|\.)", response_text)
            if answer_match:
                answer = answer_match.group(1)
            elif response_text and response_text[0].isalpha():
                answer = response_text[0].upper()
            else:
                answer = None
        
        # Try to parse reasoning from YAML format
        reasoning = ""
        if "reasoning:" in response_text:
            yaml_content = yaml.safe_load("---\n" + response_text)
            if isinstance(yaml_content, dict) and "reasoning" in yaml_content:
                reasoning = yaml_content["reasoning"]
                
                # Add other YAML fields if available
                if "understanding" in yaml_content:
                    reasoning = f"Understanding: {yaml_content['understanding']}\n\n{reasoning}"
                if "conclusion" in yaml_content:
                    reasoning = f"{reasoning}\n\nConclusion: {yaml_content['conclusion']}"
        else:
            # Use the full response as reasoning if not in YAML format
            reasoning = response_text
        
        return answer, reasoning
    
    def set_parser_mode(self, parser_mode):
        """Set the parser mode"""
        self.parser_mode = parser_mode
        return self
    
    @classmethod
    def from_prompt_type(cls, prompt_type):
        """Create a parser instance with mode matching the prompt type"""
        if prompt_type == PromptCreator.YAML_REASONING or prompt_type == PromptCreator.TEACHER_REASONED:
            return cls(parser_mode=cls.YAML)
        else:
            return cls(parser_mode=cls.BASIC)
```

### 4. MultipleChoiceTester
```python
class MultipleChoiceTester:
    """Framework for testing Qwen models on multiple choice questions"""

    def __init__(self, model_handler, prompt_creator=None):
        self.model_handler = model_handler
        self.prompt_creator = prompt_creator or PromptCreator(PromptCreator.BASIC)
        self.response_parser = ResponseParser.from_prompt_type(self.prompt_creator.prompt_type)

    def infer_example(self, example, temperature=0.7, max_tokens=1024, prompt_type=None, stream=False):
        """Inference on a single example for visualization/demonstration"""
        # Allow temporary override of prompt type
        original_prompt_type = None
        if prompt_type is not None:
            original_prompt_type = self.prompt_creator.prompt_type
            self.prompt_creator.set_prompt_type(prompt_type)
            self.response_parser = ResponseParser.from_prompt_type(prompt_type)
        
        # Prepare data
        question = example["question"]
        
        # Handle different formats of choices
        if isinstance(example["choices"], list):
            choices = example["choices"]
        elif isinstance(example["choices"], str) and example["choices"].startswith("["):
            import ast
            choices = ast.literal_eval(example["choices"]) if "[" in example["choices"] else example["choices"].split(",")
        else:
            choices = str(example["choices"]).split(",")
        
        # Generate the prompt using prompt creator
        prompt = self.prompt_creator.create_inference_prompt(question, choices)
        
        # Start timing
        start_time = time.time()
        
        if stream:
            # Use streaming generation
            streamer = self.model_handler.generate_with_streaming(
                prompt=prompt,
                temperature=temperature,
                max_tokens=max_tokens,
                stream=True
            )
            
            # Collect output from streamer
            raw_response = ""
            print("Model response:")
            for text_chunk in streamer:
                print(text_chunk, end="", flush=True)
                raw_response += text_chunk
            print("\n")
        else:
            # Generate without streaming
            raw_response = self.model_handler.generate_with_streaming(
                prompt=prompt,
                temperature=temperature,
                max_tokens=max_tokens,
                stream=False
            )
        
        response_time = time.time() - start_time
        
        # Parse the response using the response parser
        predicted_answer, reasoning = self.response_parser.parse(raw_response)
        
        # Prepare results
        result = {
            "question": question,
            "choices": choices,
            "predicted_answer": predicted_answer,
            "reasoning": reasoning,
            "response_time": response_time,
            "raw_response": raw_response,
            "prompt_type": self.prompt_creator.prompt_type,
        }
        
        # Add task_id if available
        if "task_id" in example:
            result["task_id"] = example["task_id"]
            
        # Calculate metrics if label is provided
        if "answer" in example:
            label = example["answer"]
            result["correct_answer"] = label
            result["is_correct"] = predicted_answer == label
            
            # Calculate perplexity if requested
            if hasattr(self.model_handler, "calculate_perplexity"):
                perplexity = self.model_handler.calculate_perplexity(prompt, raw_response)
                result["perplexity"] = perplexity
        
        # Restore original prompt type if it was overridden
        if original_prompt_type is not None:
            self.prompt_creator.set_prompt_type(original_prompt_type)
            self.response_parser = ResponseParser.from_prompt_type(original_prompt_type)
            
        return result

    def infer_batch(self, examples, temperature=0.7, max_tokens=1024, prompt_type=None, batch_size=4):
        """Inference on a batch of examples"""
        # Allow temporary override of prompt type
        original_prompt_type = None
        if prompt_type is not None:
            original_prompt_type = self.prompt_creator.prompt_type
            self.prompt_creator.set_prompt_type(prompt_type)
            self.response_parser = ResponseParser.from_prompt_type(prompt_type)
        
        # Prepare all prompts
        prompts = []
        metadata = []
        
        for i, example in enumerate(examples):
            # Extract data
            question = example["question"]
            
            # Handle different formats of choices
            if isinstance(example["choices"], list):
                choices = example["choices"]
            elif isinstance(example["choices"], str) and example["choices"].startswith("["):
                import ast
                choices = ast.literal_eval(example["choices"]) if "[" in example["choices"] else example["choices"].split(",")
            else:
                choices = str(example["choices"]).split(",")
            
            # Generate the prompt using prompt creator
            prompt = self.prompt_creator.create_inference_prompt(question, choices)
            prompts.append(prompt)
            
            # Store metadata for later
            meta = {
                "question": question,
                "choices": choices,
                "index": i,
            }
            
            # Add label if available
            if "answer" in example:
                meta["label"] = example["answer"]
                
            if "task_id" in example:
                meta["task_id"] = example["task_id"]
            
            metadata.append(meta)
        
        # Process in batches
        results = []
        correct_count = 0
        total_count = 0
        perplexities = []
        
        for i in range(0, len(prompts), batch_size):
            batch_prompts = prompts[i:i+batch_size]
            batch_meta = metadata[i:i+batch_size]
            
            # Process batch
            start_time = time.time()
            batch_responses = []
            
            for prompt in batch_prompts:
                response = self.model_handler.generate_with_streaming(
                    prompt=prompt,
                    temperature=temperature,
                    max_tokens=max_tokens,
                    stream=False
                )
                batch_responses.append(response)
            
            batch_time = time.time() - start_time
            
            # Process each response in the batch
            for j, (response, meta) in enumerate(zip(batch_responses, batch_meta)):
                # Parse response
                predicted_answer, reasoning = self.response_parser.parse(response)
                
                # Create result
                result = {
                    "question": meta["question"],
                    "choices": meta["choices"],
                    "predicted_answer": predicted_answer,
                    "reasoning": reasoning,
                    "raw_response": response,
                    "prompt_type": self.prompt_creator.prompt_type,
                    "response_time": batch_time / len(batch_prompts),
                }
                
                # Add task_id if available
                if "task_id" in meta:
                    result["task_id"] = meta["task_id"]
                
                # Add metrics if label available
                if "label" in meta:
                    label = meta["label"]
                    result["correct_answer"] = label
                    result["is_correct"] = predicted_answer == label
                    
                    # Update counts for accuracy
                    total_count += 1
                    if result["is_correct"]:
                        correct_count += 1
                        
                    # Calculate perplexity if possible
                    if hasattr(self.model_handler, "calculate_perplexity"):
                        prompt = batch_prompts[j]
                        perplexity = self.model_handler.calculate_perplexity(prompt, response)
                        result["perplexity"] = perplexity
                        perplexities.append(perplexity)
                        
                results.append(result)
        
        # Calculate aggregate metrics
        summary_metrics = {}
        if total_count > 0:
            summary_metrics["accuracy"] = correct_count / total_count
            summary_metrics["correct_count"] = correct_count
            summary_metrics["total_count"] = total_count
            
            if perplexities:
                summary_metrics["avg_perplexity"] = sum(perplexities) / len(perplexities)
                summary_metrics["min_perplexity"] = min(perplexities)
                summary_metrics["max_perplexity"] = max(perplexities)
        
        # Restore original prompt type if it was overridden
        if original_prompt_type is not None:
            self.prompt_creator.set_prompt_type(original_prompt_type)
            self.response_parser = ResponseParser.from_prompt_type(original_prompt_type)
            
        return results, summary_metrics

    def evaluate_dataset(self, dataset, temperature=0.7, max_tokens=1024, num_examples=None, 
                        verbose=True, prompt_type=None, batch_size=4, log_to_wandb=False):
        """Inference on a whole dataset with metrics calculation"""
        # Allow overriding the prompt type for this evaluation
        original_prompt_type = self.prompt_creator.prompt_type
        if prompt_type is not None:
            self.prompt_creator.set_prompt_type(prompt_type)
            self.response_parser = ResponseParser.from_prompt_type(prompt_type)
            
        # Select subset if specified
        if num_examples is not None:
            dataset = dataset.select(range(min(num_examples, len(dataset))))

        results = []
        correct_count = 0
        total_count = 0
        perplexities = []
        
        # Process examples in batches
        for i in range(0, len(dataset), batch_size):
            batch_examples = dataset[i:i+batch_size]
            
            if verbose:
                batch_desc = f"Batch {i//batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}"
                print(f"\nProcessing {batch_desc} with {len(batch_examples)} examples...")
            
            # Infer batch
            batch_results, batch_metrics = self.infer_batch(
                examples=batch_examples,
                temperature=temperature,
                max_tokens=max_tokens,
                batch_size=batch_size
            )
            
            # Update metrics
            results.extend(batch_results)
            if "correct_count" in batch_metrics:
                correct_count += batch_metrics["correct_count"]
                total_count += batch_metrics["total_count"]
                
                if verbose:
                    batch_accuracy = batch_metrics["accuracy"]
                    overall_accuracy = correct_count / total_count
                    print(f"Batch accuracy: {batch_accuracy:.2%}, Overall: {overall_accuracy:.2%} ({correct_count}/{total_count})")
                    
            # Collect perplexities
            if "avg_perplexity" in batch_metrics:
                for result in batch_results:
                    if "perplexity" in result:
                        perplexities.append(result["perplexity"])
                        
        # Calculate final accuracy
        accuracy = correct_count / total_count if total_count > 0 else 0.0
        
        if verbose:
            prompt_type_str = self.prompt_creator.prompt_type
            print(f"\nFinal accuracy with {prompt_type_str} prompts: {accuracy:.2%} ({correct_count}/{total_count})")
            if perplexities:
                avg_perplexity = sum(perplexities) / len(perplexities)
                print(f"Average perplexity: {avg_perplexity:.4f}")
        
        # Prepare comprehensive summary
        summary = {
            "accuracy": accuracy,
            "correct_count": correct_count,
            "total_count": total_count,
            "prompt_type": self.prompt_creator.prompt_type,
            "results": results,
        }
        
        # Add perplexity metrics if available
        if perplexities:
            summary["avg_perplexity"] = sum(perplexities) / len(perplexities)
            summary["min_perplexity"] = min(perplexities)
            summary["max_perplexity"] = max(perplexities)
            
        # Log results to wandb if requested
        if log_to_wandb and wandb.run is not None:
            metrics = {
                "test/accuracy": accuracy,
                "test/correct_count": correct_count,
                "test/total_count": total_count,
            }
            if perplexities:
                metrics["test/avg_perplexity"] = summary["avg_perplexity"]
                metrics["test/min_perplexity"] = summary["min_perplexity"]
                metrics["test/max_perplexity"] = summary["max_perplexity"]
            
            wandb.log(metrics)
            
            # Create a table of results for visualization if task_id exists
            if "task_id" in dataset.features:
                columns = ["task_id", "question", "correct_answer", "predicted_answer", "is_correct"]
                table = wandb.Table(columns=columns)
                
                for res in results[:min(100, len(results))]:
                    table.add_data(
                        res.get("task_id", "unknown"),
                        res["question"][:100] + "...",
                        res.get("correct_answer", ""),
                        res.get("predicted_answer", ""),
                        res.get("is_correct", False)
                    )
                
                wandb.log({"test_samples": table})
        
        # Restore original prompt type
        self.prompt_creator.set_prompt_type(original_prompt_type)
        self.response_parser = ResponseParser.from_prompt_type(original_prompt_type)
            
        return summary

    def save_results(self, results, output_dir="./results"):
        """Save evaluation results to file"""
        os.makedirs(output_dir, exist_ok=True)

        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        results_file = os.path.join(output_dir, f"results_{timestamp}.json")

        # Create serializable results
        serializable_results = {
            "accuracy": results.get("accuracy", 0.0),
            "correct_count": results.get("correct_count", 0),
            "total_count": results.get("total_count", 0),
            "timestamp": timestamp,
            "prompt_type": results.get("prompt_type", "unknown"),
        }

        # Add perplexity metrics if available
        if "avg_perplexity" in results:
            serializable_results["avg_perplexity"] = results["avg_perplexity"]
            serializable_results["min_perplexity"] = results["min_perplexity"]
            serializable_results["max_perplexity"] = results["max_perplexity"]

        # Process individual results
        serializable_results["individual_results"] = []
        for result in results["results"]:
            # Skip perplexity in individual results to save space
            result_copy = result.copy()
            if "perplexity" in result_copy:
                del result_copy["perplexity"]

            # Convert choices if needed
            choices = result_copy["choices"]
            if not isinstance(choices, list):
                try:
                    import ast
                    result_copy["choices"] = ast.literal_eval(choices)
                except (SyntaxError, ValueError):
                    pass

            serializable_results["individual_results"].append(result_copy)

        # Save to file
        with open(results_file, "w") as f:
            import json
            json.dump(serializable_results, f, indent=2)

        print(f"Results saved to {results_file}")
        return results_file
```

</details>

## Quick Start

Here's a simple example of how to use the model:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load the model and tokenizer
model_id = "tuandunghcmut/Qwen25_Coder_MultipleChoice"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)

# Example question
question = "What is the correct way to open a file in Python for reading?"
choices = [
    "open('file.txt', 'r')",
    "file.open('file.txt', 'read')",
    "read('file.txt')",
    "File.open('file.txt')"
]

# Format the prompt
prompt = f"""
QUESTION:
{question}

CHOICES:
{chr(65 + i)}. {choice}
for i, choice in enumerate(choices)}

Answer with a single letter from A through {chr(65 + len(choices) - 1)} without any additional explanation or commentary.
"""

# Generate response
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=10)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(f"Model's answer: {response}")
```

## Advanced Usage

### Using the MultipleChoiceTester Framework

For more advanced usage, you can use the provided `MultipleChoiceTester` framework:

```python
from save import QwenModelHandler, MultipleChoiceTester, PromptCreator

# Initialize the model handler
model_handler = QwenModelHandler(
    model_name="tuandunghcmut/Qwen25_Coder_MultipleChoice",
    max_seq_length=2048,
    quantization="4bit",
    device_map="auto"
)

# Create a prompt creator with YAML reasoning format
prompt_creator = PromptCreator(PromptCreator.YAML_REASONING)

# Initialize the tester
tester = MultipleChoiceTester(model_handler, prompt_creator=prompt_creator)

# Example question
example = {
    "question": "What is the correct way to open a file in Python for reading?",
    "choices": [
        "open('file.txt', 'r')",
        "file.open('file.txt', 'read')",
        "read('file.txt')",
        "File.open('file.txt')"
    ],
    "answer": "A"  # Optional ground truth
}

# Get prediction with reasoning
result = tester.infer_example(example, temperature=0.0001, stream=True)
print(f"Predicted answer: {result['predicted_answer']}")
print("Reasoning:")
print(result['reasoning'])
```

### Batch Processing

You can also process multiple questions in batches:

```python
# List of examples
examples = [
    {
        "question": "What is the correct way to open a file in Python for reading?",
        "choices": ["open('file.txt', 'r')", "file.open('file.txt', 'read')", "read('file.txt')", "File.open('file.txt')"],
        "answer": "A"
    },
    # Add more examples...
]

# Process batch
results, metrics = tester.infer_batch(examples, batch_size=4)
print(f"Batch accuracy: {metrics['accuracy']:.2%}")
```

### Streaming Inference

The model supports streaming inference, which provides real-time output as the model generates its response. This is particularly useful for interactive applications and when you want to see the reasoning process in real-time.

#### Basic Streaming Usage

Here's how to use streaming inference:

```python
# Initialize model handler and tester as before
model_handler = QwenModelHandler(
    model_name="tuandunghcmut/Qwen25_Coder_MultipleChoice",
    max_seq_length=2048
)
tester = MultipleChoiceTester(model_handler)

# Example with streaming
example = {
    "question": "Which Python method is used to remove whitespace from both ends of a string?",
    "choices": [
        "strip()",
        "trim()",
        "clean()",
        "remove_whitespace()"
    ],
    "answer": "A"
}

# Enable streaming with stream=True
result = tester.infer_example(
    example,
    temperature=0.0001,
    max_tokens=1024,
    stream=True  # Enable streaming
)

# The output will be printed in real-time as the model generates it
# You can also access the complete response after generation
print("\nFinal result:")
print(f"Predicted answer: {result['predicted_answer']}")
print("Complete reasoning:")
print(result['reasoning'])
```

#### Advanced Streaming Patterns

##### 1. Custom Stream Processing

You can process the streamed output in custom ways:

```python
def process_stream(streamer):
    """Custom stream processing function"""
    collected_text = ""
    for chunk in streamer:
        # Process each chunk as it arrives
        collected_text += chunk
        # You can do custom processing here
        # For example, parse partial YAML, update UI, etc.
        yield chunk, collected_text

# Use custom stream processing
result = tester.infer_example(
    example,
    temperature=0.0001,
    stream=True
)

# Process the stream with custom logic
for chunk, full_text in process_stream(result['stream']):
    # Do something with each chunk
    print(f"Chunk: {chunk}")
    print(f"Full text so far: {full_text}")
```

##### 2. YAML Streaming with Real-time Parsing

When using YAML reasoning format, you can parse the output as it streams:

```python
import yaml
from io import StringIO

def parse_yaml_stream(streamer):
    """Parse YAML content as it streams"""
    buffer = StringIO()
    for chunk in streamer:
        buffer.write(chunk)
        try:
            # Try to parse the current buffer as YAML
            yaml_content = yaml.safe_load(buffer.getvalue())
            if yaml_content:
                yield chunk, yaml_content
        except yaml.YAMLError:
            # Not enough content for valid YAML yet
            continue

# Use YAML streaming with parsing
result = tester.infer_example(
    example,
    temperature=0.0001,
    prompt_type=PromptCreator.YAML_REASONING,
    stream=True
)

# Process YAML content as it streams
for chunk, yaml_content in parse_yaml_stream(result['stream']):
    if isinstance(yaml_content, dict):
        # Access YAML fields as they become available
        if 'understanding' in yaml_content:
            print(f"Understanding: {yaml_content['understanding']}")
        if 'reasoning' in yaml_content:
            print(f"Reasoning: {yaml_content['reasoning']}")
        if 'answer' in yaml_content:
            print(f"Answer: {yaml_content['answer']}")
```

##### 3. Streaming with Progress Tracking

You can track generation progress and timing:

```python
import time

def stream_with_progress(streamer):
    """Stream with progress tracking"""
    start_time = time.time()
    tokens_generated = 0
    
    for chunk in streamer:
        tokens_generated += len(chunk.split())
        elapsed = time.time() - start_time
        tokens_per_second = tokens_generated / elapsed if elapsed > 0 else 0
        
        yield {
            'chunk': chunk,
            'tokens': tokens_generated,
            'tokens_per_second': tokens_per_second,
            'elapsed': elapsed
        }

# Use streaming with progress tracking
result = tester.infer_example(
    example,
    temperature=0.0001,
    stream=True
)

for progress in stream_with_progress(result['stream']):
    print(f"Generated {progress['tokens']} tokens "
          f"({progress['tokens_per_second']:.2f} tokens/sec)")
    print(f"Chunk: {progress['chunk']}")
```

#### Implementation Details

The streaming implementation uses Unsloth's optimized inference with the following key features:

1. **Efficient Token Generation**
   - Uses Unsloth's `FastLanguageModel` for optimized inference
   - Implements streaming using `TextIteratorStreamer`
   - Supports both greedy and temperature-based sampling

2. **Memory Management**
   - Streams tokens without storing the entire response in memory
   - Efficiently handles long responses
   - Supports batch processing with streaming

3. **Performance Optimizations**
   - Uses `use_cache=True` for faster generation
   - Implements `min_p` sampling for better quality
   - Supports 4-bit quantization for reduced memory usage

4. **Error Handling**
   - Gracefully handles streaming interruptions
   - Provides partial results if generation is interrupted
   - Maintains context for resumed generation

The streaming output will show the model's reasoning process in real-time, including:
- Understanding of the question
- Analysis of each option
- Step-by-step reasoning
- Final conclusion
- Answer selection

This is particularly useful for:
- Debugging model behavior
- Creating interactive demos
- Understanding the model's reasoning process
- Providing immediate feedback to users
- Building real-time applications

## Model Features

- **YAML-Based Reasoning**: The model provides structured reasoning in YAML format
- **Multiple Prompt Types**: Supports both basic and YAML-formatted reasoning prompts
- **Batch Processing**: Efficiently process multiple questions at once
- **Performance Metrics**: Tracks accuracy, perplexity, and response times
- **Streaming Support**: Real-time output streaming for interactive use

## License

This project is licensed under the MIT License - see the LICENSE file for details.