--- license: mit datasets: - tuandunghcmut/normal_dataset - tuandunghcmut/coding-mcq-reasoning language: - en base_model: - unsloth/Qwen2.5-Coder-1.5B-Instruct pipeline_tag: text-generation --- # Qwen25_Coder_MultipleChoice * This project focuses on distilling YAML-based structured multi-step reasoning capabilities from the GPT-4o teacher model into the smaller Qwen2.5 Coder 1.5B-Instruct LLM. * This document provides guidance on getting started with `tuandunghcmut/Qwen25_Coder_MultipleChoice`, a model fine-tuned for multiple-choice coding questions. * A demonstration notebook is available on Google Colab (click the badge below). Please note that the training code has been omitted from this notebook. It is intended solely for testing and inference using the latest checkpoint. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://drive.google.com/file/d/1Q4jtRjIkFWIAM82pAg4OBPCLjpQ8ndpI/view?usp=sharing) * Note: The initial training was conducted on a dataset with errors rather than a perfectly preprocessed one—**garbage in, garbage out**. As a result, while the model successfully adheres to the desired YAML format and demonstrates structured reasoning, its performance remains **unstable**. Future iterations will focus on retraining with a **more extensive, high-quality dataset** to improve stability and accuracy. * Apologies for the current state of the project. The initial version has some inconsistencies due to training on the old dataset, [tuandunghcmut/normal_dataset](https://huggingface.co/datasets/tuandunghcmut/normal_dataset). Future plans include refactoring the code into a more structured format, expanding the dataset to the new one, [tuandunghcmut/coding-mcq-reasoning](https://huggingface.co/datasets/tuandunghcmut/coding-mcq-reasoning), and retraining the model using distributed training for improved scalability. Additionally, I plan to train on a larger, high-quality dataset to enhance performance and ensure better stability. * The guide below provides an explanation of the code presented in the notebook. I hope you will understand my ideas and the structure of the code. ## Installation First, install the required dependencies: ```bash # Install core dependencies pip install transformers torch pandas # For faster inference (important) pip install unsloth accelerate bitsandbytes # Flash Attention (highly recommended for speed) pip install flash-attn --no-build-isolation # For dataset handling and YAML parsing pip install datasets pyyaml ``` ## Key Classes The project provides several key classes for working with the model: ### 1. QwenModelHandler ```python class QwenModelHandler: """Handler for Qwen models with inference and saving capabilities using Unsloth""" def __init__(self, model_name="unsloth/Qwen2.5-7B", max_seq_length=768, quantization=None, device_map="auto", cache_dir=None): """ Initialize model and tokenizer using Unsloth Args: model_name: Name or path of the model (preferably an unsloth model) max_seq_length: Maximum sequence length for the model quantization: Quantization type (None, '4bit', '8bit') - for compatibility device_map: Device mapping strategy cache_dir: Cache directory for models """ ``` This class handles the core model operations: - Model loading and initialization - Text generation with streaming support - Perplexity calculation - Model saving and pushing to HuggingFace Hub ### 2. PromptCreator ```python class PromptCreator: """Creates and formats prompts for multiple choice questions""" # Prompt types BASIC = "basic" # Simple answer-only format YAML_REASONING = "yaml" # YAML formatted reasoning TEACHER_REASONED = "teacher" # Same YAML format but using teacher completions ``` This class manages prompt creation with three modes: - Basic: Simple answer-only format - YAML Reasoning: Structured reasoning in YAML format - Teacher Reasoned: YAML format with teacher completions for training ### 3. ResponseParser ```python class ResponseParser: """Parser for model responses with support for different formats""" # Parser modes BASIC = "basic" # Extract single letter answer YAML = "yaml" # Parse YAML formatted response with reasoning ``` This class handles response parsing: - Extracts answers from model responses - Parses YAML-formatted reasoning - Supports both basic and YAML formats ### 4. MultipleChoiceTester ```python class MultipleChoiceTester: """Framework for testing Qwen models on multiple choice questions""" def __init__(self, model_handler, prompt_creator=None): """ Initialize with model handler and prompt configuration Args: model_handler: The QwenModelHandler instance prompt_creator: Optional PromptCreator instance """ ``` This class provides a complete testing framework: - Single example inference - Batch processing - Dataset evaluation - Performance metrics tracking - Results saving and visualization ## Full Class Implementations
Click to expand/collapse full class implementations ### 1. QwenModelHandler ```python class QwenModelHandler: """Handler for Qwen models with inference and saving capabilities using Unsloth""" def __init__(self, model_name="unsloth/Qwen2.5-7B", max_seq_length=768, quantization=None, device_map="auto", cache_dir=None): self.model_name = model_name self.max_seq_length = max_seq_length self.device_map = device_map self.quantization = quantization self.cache_dir = cache_dir # Convert quantization parameter to load_in_4bit parameter for Unsloth self.load_in_4bit = quantization == "4bit" # Load tokenizer and model self.tokenizer, self.model = self._load_model() self.response_parser = ResponseParser() def _load_model(self): """Load model and tokenizer with Unsloth for optimization""" from unsloth import FastLanguageModel import torch print(f"Loading {self.model_name} with Unsloth, max_seq_length={self.max_seq_length}") # Set dtype based on hardware dtype = None # None for auto detection # Load model and tokenizer with Unsloth model, tokenizer = FastLanguageModel.from_pretrained( model_name=self.model_name, max_seq_length=self.max_seq_length, dtype=dtype, load_in_4bit=self.load_in_4bit, cache_dir=self.cache_dir, ) return tokenizer, model def generate_with_streaming(self, prompt, temperature=0.7, max_tokens=1024, stream=True): """Generate completion with optional streaming using Unsloth's optimized inference""" # Enable faster inference from unsloth import FastLanguageModel FastLanguageModel.for_inference(self.model) # Format as chat messages = [{"role": "user", "content": prompt}] chat_text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize input model_inputs = self.tokenizer([chat_text], return_tensors="pt").to(self.model.device) # Generate with streaming if requested if stream: from transformers import TextIteratorStreamer import threading # Set up streamer streamer = TextIteratorStreamer( self.tokenizer, skip_prompt=True, skip_special_tokens=True ) # Start generation in a thread generation_kwargs = { "input_ids": model_inputs.input_ids, "attention_mask": model_inputs.attention_mask, "temperature": temperature, "max_new_tokens": max_tokens, "streamer": streamer, "do_sample": temperature > 0.0, "use_cache": True, "min_p": 0.1 if temperature > 0.0 else None, } thread = threading.Thread(target=self.model.generate, kwargs=generation_kwargs) thread.start() return streamer else: # Generate without streaming generated_ids = self.model.generate( input_ids=model_inputs.input_ids, attention_mask=model_inputs.attention_mask, temperature=temperature, max_new_tokens=max_tokens, do_sample=temperature > 0.0, use_cache=True, min_p=0.1 if temperature > 0.0 else None, ) # Decode the generated text generated_text = self.tokenizer.decode( generated_ids[0][model_inputs.input_ids.shape[1]:], skip_special_tokens=True ) return generated_text def calculate_perplexity(self, prompt, answer, temperature=0.0): """Calculate perplexity for a prompt and answer pair""" import torch # Format chat for perplexity calculation messages = [ {"role": "user", "content": prompt}, {"role": "assistant", "content": answer} ] chat_text = self.tokenizer.apply_chat_template( messages, tokenize=False ) # Tokenize the text encodings = self.tokenizer(chat_text, return_tensors="pt").to(self.model.device) # Calculate loss with torch.no_grad(): outputs = self.model(**encodings, labels=encodings.input_ids) # Get loss and calculate perplexity neg_log_likelihood = outputs.loss.item() perplexity = torch.exp(torch.tensor(neg_log_likelihood)).item() return perplexity def save_model(self, output_dir, save_method="lora"): """Save model to disk using Unsloth's optimized methods""" import os os.makedirs(output_dir, exist_ok=True) # Use Unsloth's saving methods if save_method == "lora": self.model.save_pretrained(output_dir) self.tokenizer.save_pretrained(output_dir) elif save_method == "merged_16bit": self.model.save_pretrained_merged(output_dir, self.tokenizer, save_method="merged_16bit") elif save_method == "merged_4bit": self.model.save_pretrained_merged(output_dir, self.tokenizer, save_method="merged_4bit") elif save_method == "gguf": self.model.save_pretrained_gguf(output_dir, self.tokenizer, quantization_method="q4_k_m") else: raise ValueError(f"Unknown save method: {save_method}") print(f"Model saved to {output_dir} using method {save_method}") return output_dir def push_to_hub(self, repo_id, token=None, save_method="lora", private=False): """Push model to Hugging Face Hub using Unsloth's optimized methods""" if save_method == "lora": self.model.push_to_hub_merged(repo_id, self.tokenizer, save_method="lora", token=token) elif save_method == "merged_16bit": self.model.push_to_hub_merged(repo_id, self.tokenizer, save_method="merged_16bit", token=token) elif save_method == "merged_4bit": self.model.push_to_hub_merged(repo_id, self.tokenizer, save_method="merged_4bit", token=token) elif save_method == "gguf": self.model.push_to_hub_gguf( repo_id, self.tokenizer, quantization_method=["q4_k_m", "q5_k_m"], token=token ) else: raise ValueError(f"Unknown save method: {save_method}") print(f"Model successfully pushed to: https://huggingface.co/{repo_id}") return f"https://huggingface.co/{repo_id}" ``` ### 2. PromptCreator ```python class PromptCreator: """Creates and formats prompts for multiple choice questions""" # Prompt types BASIC = "basic" # Simple answer-only format YAML_REASONING = "yaml" # YAML formatted reasoning TEACHER_REASONED = "teacher" # Same YAML format but using teacher completions def __init__(self, prompt_type=BASIC): if prompt_type == self.TEACHER_REASONED: prompt_type = self.YAML_REASONING self.prompt_type = prompt_type self.original_type = prompt_type def format_choices(self, choices): """Format choices as a lettered list""" return "\n".join( [f"{chr(65 + i)}. {choice}" for i, choice in enumerate(choices)] ) def get_max_letter(self, choices): """Get the maximum letter based on number of choices""" return chr(65 + len(choices) - 1) def create_inference_prompt(self, question, choices): """Create a prompt for inference based on current prompt type""" formatted_choices = self.format_choices(choices) max_letter = self.get_max_letter(choices) if self.prompt_type == self.YAML_REASONING: return self._create_yaml_prompt(question, formatted_choices, max_letter) else: return self._create_basic_prompt(question, formatted_choices, max_letter) def _create_basic_prompt(self, question, formatted_choices, max_letter): """Create a basic prompt asking for just the answer letter""" return f""" QUESTION: {question} CHOICES: {formatted_choices} Answer with a single letter from A through {max_letter} without any additional explanation or commentary. """ def _create_yaml_prompt(self, question, formatted_choices, max_letter): """Create a prompt requesting YAML-formatted reasoning""" return f""" QUESTION: {question} CHOICES: {formatted_choices} Analyze this question step-by-step and provide a detailed explanation. Your response MUST be in YAML format as follows: understanding: | analysis: | reasoning: | conclusion: | answer: The answer field MUST contain ONLY a single character letter. """ def create_training_prompt(self, question, choices): """Create a prompt for training with the current prompt type""" formatted_choices = self.format_choices(choices) max_letter = self.get_max_letter(choices) if self.prompt_type == self.YAML_REASONING: return self._create_yaml_training_prompt( question, formatted_choices, max_letter ) else: return self._create_basic_training_prompt( question, formatted_choices, max_letter ) def _create_basic_training_prompt(self, question, formatted_choices, max_letter): """Create a basic training prompt""" return f""" QUESTION: {question} CHOICES: {formatted_choices} The answer is a single letter (A, B, C, etc.). Only provide ONE character as your answer: """ def _create_yaml_training_prompt(self, question, formatted_choices, max_letter): """Create a YAML-formatted training prompt""" return f""" QUESTION: {question} CHOICES: {formatted_choices} Analyze this question step-by-step and provide a detailed explanation. Follow the YAML format in your response: understanding: | analysis: | reasoning: | conclusion: | answer: """ def set_prompt_type(self, prompt_type): """Set the prompt type""" self.original_type = prompt_type if prompt_type == self.TEACHER_REASONED: pass self.prompt_type = prompt_type return self def is_teacher_mode(self): """Check if we're using teacher mode""" return self.original_type == self.TEACHER_REASONED ``` ### 3. ResponseParser ```python class ResponseParser: """Parser for model responses with support for different formats""" # Parser modes BASIC = "basic" # Extract single letter answer YAML = "yaml" # Parse YAML formatted response with reasoning def __init__(self, parser_mode=BASIC): self.parser_mode = parser_mode def parse(self, response_text): """Parse the model's response according to the current mode""" if self.parser_mode == self.YAML: return self._parse_yaml_response(response_text) else: return self._parse_basic_response(response_text) def _parse_basic_response(self, response_text): """Parse basic response looking for a letter answer""" import re # Try to extract a single letter answer (A-Z) answer_match = re.search(r"(?:^|\s)([A-Z])(?:\s|$|\.)", response_text) if answer_match: answer = answer_match.group(1) else: # Take first character if it's a letter if response_text and response_text[0].isalpha(): answer = response_text[0].upper() else: answer = None # For basic mode, we don't extract detailed reasoning reasoning = "" return answer, reasoning def _parse_yaml_response(self, response_text): """Parse YAML formatted response extracting answer and reasoning""" import re import yaml # First try to find answer in YAML format yaml_match = re.search(r"answer:\s*([A-Z])", response_text) if yaml_match: answer = yaml_match.group(1) else: # Fall back to basic extraction if YAML parsing fails answer_match = re.search(r"(?:^|\s)([A-Z])(?:\s|$|\.)", response_text) if answer_match: answer = answer_match.group(1) elif response_text and response_text[0].isalpha(): answer = response_text[0].upper() else: answer = None # Try to parse reasoning from YAML format reasoning = "" if "reasoning:" in response_text: yaml_content = yaml.safe_load("---\n" + response_text) if isinstance(yaml_content, dict) and "reasoning" in yaml_content: reasoning = yaml_content["reasoning"] # Add other YAML fields if available if "understanding" in yaml_content: reasoning = f"Understanding: {yaml_content['understanding']}\n\n{reasoning}" if "conclusion" in yaml_content: reasoning = f"{reasoning}\n\nConclusion: {yaml_content['conclusion']}" else: # Use the full response as reasoning if not in YAML format reasoning = response_text return answer, reasoning def set_parser_mode(self, parser_mode): """Set the parser mode""" self.parser_mode = parser_mode return self @classmethod def from_prompt_type(cls, prompt_type): """Create a parser instance with mode matching the prompt type""" if prompt_type == PromptCreator.YAML_REASONING or prompt_type == PromptCreator.TEACHER_REASONED: return cls(parser_mode=cls.YAML) else: return cls(parser_mode=cls.BASIC) ``` ### 4. MultipleChoiceTester ```python class MultipleChoiceTester: """Framework for testing Qwen models on multiple choice questions""" def __init__(self, model_handler, prompt_creator=None): self.model_handler = model_handler self.prompt_creator = prompt_creator or PromptCreator(PromptCreator.BASIC) self.response_parser = ResponseParser.from_prompt_type(self.prompt_creator.prompt_type) def infer_example(self, example, temperature=0.7, max_tokens=1024, prompt_type=None, stream=False): """Inference on a single example for visualization/demonstration""" # Allow temporary override of prompt type original_prompt_type = None if prompt_type is not None: original_prompt_type = self.prompt_creator.prompt_type self.prompt_creator.set_prompt_type(prompt_type) self.response_parser = ResponseParser.from_prompt_type(prompt_type) # Prepare data question = example["question"] # Handle different formats of choices if isinstance(example["choices"], list): choices = example["choices"] elif isinstance(example["choices"], str) and example["choices"].startswith("["): import ast choices = ast.literal_eval(example["choices"]) if "[" in example["choices"] else example["choices"].split(",") else: choices = str(example["choices"]).split(",") # Generate the prompt using prompt creator prompt = self.prompt_creator.create_inference_prompt(question, choices) # Start timing start_time = time.time() if stream: # Use streaming generation streamer = self.model_handler.generate_with_streaming( prompt=prompt, temperature=temperature, max_tokens=max_tokens, stream=True ) # Collect output from streamer raw_response = "" print("Model response:") for text_chunk in streamer: print(text_chunk, end="", flush=True) raw_response += text_chunk print("\n") else: # Generate without streaming raw_response = self.model_handler.generate_with_streaming( prompt=prompt, temperature=temperature, max_tokens=max_tokens, stream=False ) response_time = time.time() - start_time # Parse the response using the response parser predicted_answer, reasoning = self.response_parser.parse(raw_response) # Prepare results result = { "question": question, "choices": choices, "predicted_answer": predicted_answer, "reasoning": reasoning, "response_time": response_time, "raw_response": raw_response, "prompt_type": self.prompt_creator.prompt_type, } # Add task_id if available if "task_id" in example: result["task_id"] = example["task_id"] # Calculate metrics if label is provided if "answer" in example: label = example["answer"] result["correct_answer"] = label result["is_correct"] = predicted_answer == label # Calculate perplexity if requested if hasattr(self.model_handler, "calculate_perplexity"): perplexity = self.model_handler.calculate_perplexity(prompt, raw_response) result["perplexity"] = perplexity # Restore original prompt type if it was overridden if original_prompt_type is not None: self.prompt_creator.set_prompt_type(original_prompt_type) self.response_parser = ResponseParser.from_prompt_type(original_prompt_type) return result def infer_batch(self, examples, temperature=0.7, max_tokens=1024, prompt_type=None, batch_size=4): """Inference on a batch of examples""" # Allow temporary override of prompt type original_prompt_type = None if prompt_type is not None: original_prompt_type = self.prompt_creator.prompt_type self.prompt_creator.set_prompt_type(prompt_type) self.response_parser = ResponseParser.from_prompt_type(prompt_type) # Prepare all prompts prompts = [] metadata = [] for i, example in enumerate(examples): # Extract data question = example["question"] # Handle different formats of choices if isinstance(example["choices"], list): choices = example["choices"] elif isinstance(example["choices"], str) and example["choices"].startswith("["): import ast choices = ast.literal_eval(example["choices"]) if "[" in example["choices"] else example["choices"].split(",") else: choices = str(example["choices"]).split(",") # Generate the prompt using prompt creator prompt = self.prompt_creator.create_inference_prompt(question, choices) prompts.append(prompt) # Store metadata for later meta = { "question": question, "choices": choices, "index": i, } # Add label if available if "answer" in example: meta["label"] = example["answer"] if "task_id" in example: meta["task_id"] = example["task_id"] metadata.append(meta) # Process in batches results = [] correct_count = 0 total_count = 0 perplexities = [] for i in range(0, len(prompts), batch_size): batch_prompts = prompts[i:i+batch_size] batch_meta = metadata[i:i+batch_size] # Process batch start_time = time.time() batch_responses = [] for prompt in batch_prompts: response = self.model_handler.generate_with_streaming( prompt=prompt, temperature=temperature, max_tokens=max_tokens, stream=False ) batch_responses.append(response) batch_time = time.time() - start_time # Process each response in the batch for j, (response, meta) in enumerate(zip(batch_responses, batch_meta)): # Parse response predicted_answer, reasoning = self.response_parser.parse(response) # Create result result = { "question": meta["question"], "choices": meta["choices"], "predicted_answer": predicted_answer, "reasoning": reasoning, "raw_response": response, "prompt_type": self.prompt_creator.prompt_type, "response_time": batch_time / len(batch_prompts), } # Add task_id if available if "task_id" in meta: result["task_id"] = meta["task_id"] # Add metrics if label available if "label" in meta: label = meta["label"] result["correct_answer"] = label result["is_correct"] = predicted_answer == label # Update counts for accuracy total_count += 1 if result["is_correct"]: correct_count += 1 # Calculate perplexity if possible if hasattr(self.model_handler, "calculate_perplexity"): prompt = batch_prompts[j] perplexity = self.model_handler.calculate_perplexity(prompt, response) result["perplexity"] = perplexity perplexities.append(perplexity) results.append(result) # Calculate aggregate metrics summary_metrics = {} if total_count > 0: summary_metrics["accuracy"] = correct_count / total_count summary_metrics["correct_count"] = correct_count summary_metrics["total_count"] = total_count if perplexities: summary_metrics["avg_perplexity"] = sum(perplexities) / len(perplexities) summary_metrics["min_perplexity"] = min(perplexities) summary_metrics["max_perplexity"] = max(perplexities) # Restore original prompt type if it was overridden if original_prompt_type is not None: self.prompt_creator.set_prompt_type(original_prompt_type) self.response_parser = ResponseParser.from_prompt_type(original_prompt_type) return results, summary_metrics def evaluate_dataset(self, dataset, temperature=0.7, max_tokens=1024, num_examples=None, verbose=True, prompt_type=None, batch_size=4, log_to_wandb=False): """Inference on a whole dataset with metrics calculation""" # Allow overriding the prompt type for this evaluation original_prompt_type = self.prompt_creator.prompt_type if prompt_type is not None: self.prompt_creator.set_prompt_type(prompt_type) self.response_parser = ResponseParser.from_prompt_type(prompt_type) # Select subset if specified if num_examples is not None: dataset = dataset.select(range(min(num_examples, len(dataset)))) results = [] correct_count = 0 total_count = 0 perplexities = [] # Process examples in batches for i in range(0, len(dataset), batch_size): batch_examples = dataset[i:i+batch_size] if verbose: batch_desc = f"Batch {i//batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}" print(f"\nProcessing {batch_desc} with {len(batch_examples)} examples...") # Infer batch batch_results, batch_metrics = self.infer_batch( examples=batch_examples, temperature=temperature, max_tokens=max_tokens, batch_size=batch_size ) # Update metrics results.extend(batch_results) if "correct_count" in batch_metrics: correct_count += batch_metrics["correct_count"] total_count += batch_metrics["total_count"] if verbose: batch_accuracy = batch_metrics["accuracy"] overall_accuracy = correct_count / total_count print(f"Batch accuracy: {batch_accuracy:.2%}, Overall: {overall_accuracy:.2%} ({correct_count}/{total_count})") # Collect perplexities if "avg_perplexity" in batch_metrics: for result in batch_results: if "perplexity" in result: perplexities.append(result["perplexity"]) # Calculate final accuracy accuracy = correct_count / total_count if total_count > 0 else 0.0 if verbose: prompt_type_str = self.prompt_creator.prompt_type print(f"\nFinal accuracy with {prompt_type_str} prompts: {accuracy:.2%} ({correct_count}/{total_count})") if perplexities: avg_perplexity = sum(perplexities) / len(perplexities) print(f"Average perplexity: {avg_perplexity:.4f}") # Prepare comprehensive summary summary = { "accuracy": accuracy, "correct_count": correct_count, "total_count": total_count, "prompt_type": self.prompt_creator.prompt_type, "results": results, } # Add perplexity metrics if available if perplexities: summary["avg_perplexity"] = sum(perplexities) / len(perplexities) summary["min_perplexity"] = min(perplexities) summary["max_perplexity"] = max(perplexities) # Log results to wandb if requested if log_to_wandb and wandb.run is not None: metrics = { "test/accuracy": accuracy, "test/correct_count": correct_count, "test/total_count": total_count, } if perplexities: metrics["test/avg_perplexity"] = summary["avg_perplexity"] metrics["test/min_perplexity"] = summary["min_perplexity"] metrics["test/max_perplexity"] = summary["max_perplexity"] wandb.log(metrics) # Create a table of results for visualization if task_id exists if "task_id" in dataset.features: columns = ["task_id", "question", "correct_answer", "predicted_answer", "is_correct"] table = wandb.Table(columns=columns) for res in results[:min(100, len(results))]: table.add_data( res.get("task_id", "unknown"), res["question"][:100] + "...", res.get("correct_answer", ""), res.get("predicted_answer", ""), res.get("is_correct", False) ) wandb.log({"test_samples": table}) # Restore original prompt type self.prompt_creator.set_prompt_type(original_prompt_type) self.response_parser = ResponseParser.from_prompt_type(original_prompt_type) return summary def save_results(self, results, output_dir="./results"): """Save evaluation results to file""" os.makedirs(output_dir, exist_ok=True) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") results_file = os.path.join(output_dir, f"results_{timestamp}.json") # Create serializable results serializable_results = { "accuracy": results.get("accuracy", 0.0), "correct_count": results.get("correct_count", 0), "total_count": results.get("total_count", 0), "timestamp": timestamp, "prompt_type": results.get("prompt_type", "unknown"), } # Add perplexity metrics if available if "avg_perplexity" in results: serializable_results["avg_perplexity"] = results["avg_perplexity"] serializable_results["min_perplexity"] = results["min_perplexity"] serializable_results["max_perplexity"] = results["max_perplexity"] # Process individual results serializable_results["individual_results"] = [] for result in results["results"]: # Skip perplexity in individual results to save space result_copy = result.copy() if "perplexity" in result_copy: del result_copy["perplexity"] # Convert choices if needed choices = result_copy["choices"] if not isinstance(choices, list): try: import ast result_copy["choices"] = ast.literal_eval(choices) except (SyntaxError, ValueError): pass serializable_results["individual_results"].append(result_copy) # Save to file with open(results_file, "w") as f: import json json.dump(serializable_results, f, indent=2) print(f"Results saved to {results_file}") return results_file ```
## Quick Start Here's a simple example of how to use the model: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and tokenizer model_id = "tuandunghcmut/Qwen25_Coder_MultipleChoice" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) # Example question question = "What is the correct way to open a file in Python for reading?" choices = [ "open('file.txt', 'r')", "file.open('file.txt', 'read')", "read('file.txt')", "File.open('file.txt')" ] # Format the prompt prompt = f""" QUESTION: {question} CHOICES: {chr(65 + i)}. {choice} for i, choice in enumerate(choices)} Answer with a single letter from A through {chr(65 + len(choices) - 1)} without any additional explanation or commentary. """ # Generate response inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=10) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"Model's answer: {response}") ``` ## Advanced Usage ### Using the MultipleChoiceTester Framework For more advanced usage, you can use the provided `MultipleChoiceTester` framework: ```python from save import QwenModelHandler, MultipleChoiceTester, PromptCreator # Initialize the model handler model_handler = QwenModelHandler( model_name="tuandunghcmut/Qwen25_Coder_MultipleChoice", max_seq_length=2048, quantization="4bit", device_map="auto" ) # Create a prompt creator with YAML reasoning format prompt_creator = PromptCreator(PromptCreator.YAML_REASONING) # Initialize the tester tester = MultipleChoiceTester(model_handler, prompt_creator=prompt_creator) # Example question example = { "question": "What is the correct way to open a file in Python for reading?", "choices": [ "open('file.txt', 'r')", "file.open('file.txt', 'read')", "read('file.txt')", "File.open('file.txt')" ], "answer": "A" # Optional ground truth } # Get prediction with reasoning result = tester.infer_example(example, temperature=0.0001, stream=True) print(f"Predicted answer: {result['predicted_answer']}") print("Reasoning:") print(result['reasoning']) ``` ### Batch Processing You can also process multiple questions in batches: ```python # List of examples examples = [ { "question": "What is the correct way to open a file in Python for reading?", "choices": ["open('file.txt', 'r')", "file.open('file.txt', 'read')", "read('file.txt')", "File.open('file.txt')"], "answer": "A" }, # Add more examples... ] # Process batch results, metrics = tester.infer_batch(examples, batch_size=4) print(f"Batch accuracy: {metrics['accuracy']:.2%}") ``` ### Streaming Inference The model supports streaming inference, which provides real-time output as the model generates its response. This is particularly useful for interactive applications and when you want to see the reasoning process in real-time. #### Basic Streaming Usage Here's how to use streaming inference: ```python # Initialize model handler and tester as before model_handler = QwenModelHandler( model_name="tuandunghcmut/Qwen25_Coder_MultipleChoice", max_seq_length=2048 ) tester = MultipleChoiceTester(model_handler) # Example with streaming example = { "question": "Which Python method is used to remove whitespace from both ends of a string?", "choices": [ "strip()", "trim()", "clean()", "remove_whitespace()" ], "answer": "A" } # Enable streaming with stream=True result = tester.infer_example( example, temperature=0.0001, max_tokens=1024, stream=True # Enable streaming ) # The output will be printed in real-time as the model generates it # You can also access the complete response after generation print("\nFinal result:") print(f"Predicted answer: {result['predicted_answer']}") print("Complete reasoning:") print(result['reasoning']) ``` #### Advanced Streaming Patterns ##### 1. Custom Stream Processing You can process the streamed output in custom ways: ```python def process_stream(streamer): """Custom stream processing function""" collected_text = "" for chunk in streamer: # Process each chunk as it arrives collected_text += chunk # You can do custom processing here # For example, parse partial YAML, update UI, etc. yield chunk, collected_text # Use custom stream processing result = tester.infer_example( example, temperature=0.0001, stream=True ) # Process the stream with custom logic for chunk, full_text in process_stream(result['stream']): # Do something with each chunk print(f"Chunk: {chunk}") print(f"Full text so far: {full_text}") ``` ##### 2. YAML Streaming with Real-time Parsing When using YAML reasoning format, you can parse the output as it streams: ```python import yaml from io import StringIO def parse_yaml_stream(streamer): """Parse YAML content as it streams""" buffer = StringIO() for chunk in streamer: buffer.write(chunk) try: # Try to parse the current buffer as YAML yaml_content = yaml.safe_load(buffer.getvalue()) if yaml_content: yield chunk, yaml_content except yaml.YAMLError: # Not enough content for valid YAML yet continue # Use YAML streaming with parsing result = tester.infer_example( example, temperature=0.0001, prompt_type=PromptCreator.YAML_REASONING, stream=True ) # Process YAML content as it streams for chunk, yaml_content in parse_yaml_stream(result['stream']): if isinstance(yaml_content, dict): # Access YAML fields as they become available if 'understanding' in yaml_content: print(f"Understanding: {yaml_content['understanding']}") if 'reasoning' in yaml_content: print(f"Reasoning: {yaml_content['reasoning']}") if 'answer' in yaml_content: print(f"Answer: {yaml_content['answer']}") ``` ##### 3. Streaming with Progress Tracking You can track generation progress and timing: ```python import time def stream_with_progress(streamer): """Stream with progress tracking""" start_time = time.time() tokens_generated = 0 for chunk in streamer: tokens_generated += len(chunk.split()) elapsed = time.time() - start_time tokens_per_second = tokens_generated / elapsed if elapsed > 0 else 0 yield { 'chunk': chunk, 'tokens': tokens_generated, 'tokens_per_second': tokens_per_second, 'elapsed': elapsed } # Use streaming with progress tracking result = tester.infer_example( example, temperature=0.0001, stream=True ) for progress in stream_with_progress(result['stream']): print(f"Generated {progress['tokens']} tokens " f"({progress['tokens_per_second']:.2f} tokens/sec)") print(f"Chunk: {progress['chunk']}") ``` #### Implementation Details The streaming implementation uses Unsloth's optimized inference with the following key features: 1. **Efficient Token Generation** - Uses Unsloth's `FastLanguageModel` for optimized inference - Implements streaming using `TextIteratorStreamer` - Supports both greedy and temperature-based sampling 2. **Memory Management** - Streams tokens without storing the entire response in memory - Efficiently handles long responses - Supports batch processing with streaming 3. **Performance Optimizations** - Uses `use_cache=True` for faster generation - Implements `min_p` sampling for better quality - Supports 4-bit quantization for reduced memory usage 4. **Error Handling** - Gracefully handles streaming interruptions - Provides partial results if generation is interrupted - Maintains context for resumed generation The streaming output will show the model's reasoning process in real-time, including: - Understanding of the question - Analysis of each option - Step-by-step reasoning - Final conclusion - Answer selection This is particularly useful for: - Debugging model behavior - Creating interactive demos - Understanding the model's reasoning process - Providing immediate feedback to users - Building real-time applications ## Model Features - **YAML-Based Reasoning**: The model provides structured reasoning in YAML format - **Multiple Prompt Types**: Supports both basic and YAML-formatted reasoning prompts - **Batch Processing**: Efficiently process multiple questions at once - **Performance Metrics**: Tracks accuracy, perplexity, and response times - **Streaming Support**: Real-time output streaming for interactive use ## License This project is licensed under the MIT License - see the LICENSE file for details.