Add files using upload-large-folder tool
Browse files- chat_template.jinja +96 -0
- config.json +99 -0
- configuration_deepseek.py +212 -0
- generation_config.json +5 -0
- model-00004-of-00527.safetensors +3 -0
- model-00011-of-00527.safetensors +3 -0
- model-00013-of-00527.safetensors +3 -0
- model-00017-of-00527.safetensors +3 -0
- model-00022-of-00527.safetensors +3 -0
- model-00034-of-00527.safetensors +3 -0
- model-00035-of-00527.safetensors +3 -0
- model-00037-of-00527.safetensors +3 -0
- model-00056-of-00527.safetensors +3 -0
- model-00299-of-00527.safetensors +3 -0
- model-00316-of-00527.safetensors +3 -0
- model-00325-of-00527.safetensors +3 -0
- model-00401-of-00527.safetensors +3 -0
- model-00415-of-00527.safetensors +3 -0
- model-00418-of-00527.safetensors +3 -0
- model-00424-of-00527.safetensors +3 -0
- model-00430-of-00527.safetensors +3 -0
- model-00431-of-00527.safetensors +3 -0
- model-00433-of-00527.safetensors +3 -0
- model-00434-of-00527.safetensors +3 -0
- model-00435-of-00527.safetensors +3 -0
- model-00447-of-00527.safetensors +3 -0
- model-00453-of-00527.safetensors +3 -0
- model-00454-of-00527.safetensors +3 -0
- model-00456-of-00527.safetensors +3 -0
- model-00463-of-00527.safetensors +3 -0
- model-00468-of-00527.safetensors +3 -0
- model-00471-of-00527.safetensors +3 -0
- model-00478-of-00527.safetensors +3 -0
- model-00482-of-00527.safetensors +3 -0
- model-00483-of-00527.safetensors +3 -0
- model-00484-of-00527.safetensors +3 -0
- model-00487-of-00527.safetensors +3 -0
- model-00491-of-00527.safetensors +3 -0
- model-00497-of-00527.safetensors +3 -0
- model-00498-of-00527.safetensors +3 -0
- model-00499-of-00527.safetensors +3 -0
- model-00518-of-00527.safetensors +3 -0
- model-00519-of-00527.safetensors +3 -0
- model-00520-of-00527.safetensors +3 -0
- model-00521-of-00527.safetensors +3 -0
- model-00522-of-00527.safetensors +3 -0
- model-00527-of-00527.safetensors +3 -0
- special_tokens_map.json +40 -0
- tokenization_kimi.py +349 -0
- tokenizer_config.json +180 -0
chat_template.jinja
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- macro render_content(msg) -%}
|
| 2 |
+
{%- set c = msg.get('content') -%}
|
| 3 |
+
{%- if c is string -%}
|
| 4 |
+
{{ c }}
|
| 5 |
+
{%- elif c is not none -%}
|
| 6 |
+
{% for content in c -%}
|
| 7 |
+
{% if content['type'] == 'image' or 'image' in content or 'image_url' in content -%}
|
| 8 |
+
<|media_start|>image<|media_content|><|media_pad|><|media_end|>
|
| 9 |
+
{% else -%}
|
| 10 |
+
{{ content['text'] }}
|
| 11 |
+
{%- endif -%}
|
| 12 |
+
{%- endfor -%}
|
| 13 |
+
{%- endif -%}
|
| 14 |
+
{%- endmacro -%}
|
| 15 |
+
|
| 16 |
+
{% macro set_roles(message) -%}
|
| 17 |
+
{%- set role_name = message.get('name') or message['role'] -%}
|
| 18 |
+
{%- if message['role'] == 'user' -%}
|
| 19 |
+
<|im_user|>{{role_name}}<|im_middle|>
|
| 20 |
+
{%- elif message['role'] == 'assistant' -%}
|
| 21 |
+
<|im_assistant|>{{role_name}}<|im_middle|>
|
| 22 |
+
{%- else -%}
|
| 23 |
+
<|im_system|>{{role_name}}<|im_middle|>
|
| 24 |
+
{%- endif -%}
|
| 25 |
+
{%- endmacro -%}
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
{%- macro render_toolcalls(message) -%}
|
| 29 |
+
<|tool_calls_section_begin|>
|
| 30 |
+
{%- for tool_call in message['tool_calls'] -%}
|
| 31 |
+
{%- set formatted_id = tool_call['id'] -%}
|
| 32 |
+
<|tool_call_begin|>{{ formatted_id }}<|tool_call_argument_begin|>{% if tool_call['function']['arguments'] is string %}{{ tool_call['function']['arguments'] }}{% else %}{{ tool_call['function']['arguments'] | tojson }}{% endif %}<|tool_call_end|>
|
| 33 |
+
{%- endfor -%}
|
| 34 |
+
<|tool_calls_section_end|>
|
| 35 |
+
{%- endmacro -%}
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
{# Find last non-tool-call assisitant message #}
|
| 39 |
+
{%- set ns = namespace(last_non_tool_call_assistant_msg=-1) -%}
|
| 40 |
+
{%- for idx in range(messages|length-1, -1, -1) -%}
|
| 41 |
+
{%- if messages[idx]['role'] == 'assistant' and not messages[idx].get('tool_calls') -%}
|
| 42 |
+
{%- set ns.last_non_tool_call_assistant_msg = idx -%}
|
| 43 |
+
{%- break -%}
|
| 44 |
+
{%- endif -%}
|
| 45 |
+
{%- endfor -%}
|
| 46 |
+
|
| 47 |
+
{# split all messages into history & suffix, reasoning_content in suffix should be reserved.#}
|
| 48 |
+
{%- set hist_msgs = messages[:ns.last_non_tool_call_assistant_msg+1] -%}
|
| 49 |
+
{%- set suffix_msgs = messages[ns.last_non_tool_call_assistant_msg+1:] -%}
|
| 50 |
+
|
| 51 |
+
{%- if tools -%}
|
| 52 |
+
<|im_system|>tool_declare<|im_middle|>{{ tools | tojson(separators=(',', ':')) }}<|im_end|>
|
| 53 |
+
{%- endif -%}
|
| 54 |
+
|
| 55 |
+
{%- for message in hist_msgs -%}
|
| 56 |
+
{%- if loop.first and messages[0]['role'] != 'system' -%}
|
| 57 |
+
<|im_system|>system<|im_middle|>You are Kimi, an AI assistant created by Moonshot AI.<|im_end|>
|
| 58 |
+
{%- endif -%}
|
| 59 |
+
{{set_roles(message)}}
|
| 60 |
+
{%- if message['role'] == 'assistant' -%}
|
| 61 |
+
<think></think>{{render_content(message)}}
|
| 62 |
+
{%- if message.get('tool_calls') -%}
|
| 63 |
+
{{render_toolcalls(message)}}
|
| 64 |
+
{%- endif -%}
|
| 65 |
+
{%- elif message['role'] == 'tool' -%}
|
| 66 |
+
{%- set tool_call_id = message.tool_call_id -%}
|
| 67 |
+
## Return of {{ tool_call_id }}
|
| 68 |
+
{{render_content(message)}}
|
| 69 |
+
{%- elif message['content'] is not none -%}
|
| 70 |
+
{{render_content(message)}}
|
| 71 |
+
{%- endif -%}
|
| 72 |
+
<|im_end|>
|
| 73 |
+
{%- endfor -%}
|
| 74 |
+
|
| 75 |
+
{%- for message in suffix_msgs -%}
|
| 76 |
+
{{set_roles(message)}}
|
| 77 |
+
{%- if message['role'] == 'assistant' -%}
|
| 78 |
+
{%- set rc = message.get('reasoning_content', '') -%}
|
| 79 |
+
<think>{{rc}}</think>{{render_content(message)}}
|
| 80 |
+
{%- if message.get('tool_calls') -%}
|
| 81 |
+
{{render_toolcalls(message)}}
|
| 82 |
+
{%- endif -%}
|
| 83 |
+
{%- elif message['role'] == 'tool' -%}
|
| 84 |
+
{%- set tool_call_id = message.tool_call_id -%}
|
| 85 |
+
## Return of {{ tool_call_id }}
|
| 86 |
+
{{render_content(message)}}
|
| 87 |
+
{%- elif message['content'] is not none -%}
|
| 88 |
+
{{render_content(message)}}
|
| 89 |
+
{%- endif -%}
|
| 90 |
+
<|im_end|>
|
| 91 |
+
{%- endfor -%}
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
{%- if add_generation_prompt -%}
|
| 95 |
+
<|im_assistant|>assistant<|im_middle|>
|
| 96 |
+
{%- endif -%}
|
config.json
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_attn_implementation_autoset": false,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"DeepseekV3ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "configuration_deepseek.DeepseekV3Config",
|
| 10 |
+
"AutoModel": "modeling_deepseek.DeepseekV3Model",
|
| 11 |
+
"AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
|
| 12 |
+
},
|
| 13 |
+
"aux_loss_alpha": 0.001,
|
| 14 |
+
"bos_token_id": 163584,
|
| 15 |
+
"dtype": "bfloat16",
|
| 16 |
+
"eos_token_id": 163586,
|
| 17 |
+
"ep_size": 1,
|
| 18 |
+
"first_k_dense_replace": 1,
|
| 19 |
+
"hidden_act": "silu",
|
| 20 |
+
"hidden_size": 7168,
|
| 21 |
+
"initializer_range": 0.02,
|
| 22 |
+
"intermediate_size": 18432,
|
| 23 |
+
"kv_lora_rank": 512,
|
| 24 |
+
"max_position_embeddings": 262144,
|
| 25 |
+
"model_type": "deepseek_v3",
|
| 26 |
+
"moe_intermediate_size": 2048,
|
| 27 |
+
"moe_layer_freq": 1,
|
| 28 |
+
"n_group": 1,
|
| 29 |
+
"n_routed_experts": 384,
|
| 30 |
+
"n_shared_experts": 1,
|
| 31 |
+
"norm_topk_prob": true,
|
| 32 |
+
"num_attention_heads": 64,
|
| 33 |
+
"num_experts_per_tok": 8,
|
| 34 |
+
"num_hidden_layers": 61,
|
| 35 |
+
"num_key_value_heads": 64,
|
| 36 |
+
"num_nextn_predict_layers": 0,
|
| 37 |
+
"pad_token_id": 163839,
|
| 38 |
+
"pretraining_tp": 1,
|
| 39 |
+
"q_lora_rank": 1536,
|
| 40 |
+
"qk_nope_head_dim": 128,
|
| 41 |
+
"qk_rope_head_dim": 64,
|
| 42 |
+
"quantization_config": {
|
| 43 |
+
"config_groups": {
|
| 44 |
+
"group_0": {
|
| 45 |
+
"format": null,
|
| 46 |
+
"input_activations": null,
|
| 47 |
+
"output_activations": null,
|
| 48 |
+
"targets": [
|
| 49 |
+
"Linear"
|
| 50 |
+
],
|
| 51 |
+
"weights": {
|
| 52 |
+
"actorder": null,
|
| 53 |
+
"block_structure": null,
|
| 54 |
+
"dynamic": false,
|
| 55 |
+
"group_size": 32,
|
| 56 |
+
"num_bits": 4,
|
| 57 |
+
"observer": "minmax",
|
| 58 |
+
"observer_kwargs": {},
|
| 59 |
+
"strategy": "group",
|
| 60 |
+
"symmetric": true,
|
| 61 |
+
"type": "int"
|
| 62 |
+
}
|
| 63 |
+
}
|
| 64 |
+
},
|
| 65 |
+
"format": "pack-quantized",
|
| 66 |
+
"global_compression_ratio": null,
|
| 67 |
+
"ignore": [
|
| 68 |
+
"lm_head",
|
| 69 |
+
"re:.*self_attn.*",
|
| 70 |
+
"re:.*shared_experts.*",
|
| 71 |
+
"re:.*mlp\\.(gate|up|gate_up|down)_proj.*"
|
| 72 |
+
],
|
| 73 |
+
"kv_cache_scheme": null,
|
| 74 |
+
"quant_method": "compressed-tensors",
|
| 75 |
+
"quantization_status": "compressed",
|
| 76 |
+
"sparsity_config": {}
|
| 77 |
+
},
|
| 78 |
+
"rms_norm_eps": 1e-05,
|
| 79 |
+
"rope_scaling": {
|
| 80 |
+
"beta_fast": 1.0,
|
| 81 |
+
"beta_slow": 1.0,
|
| 82 |
+
"factor": 64.0,
|
| 83 |
+
"mscale": 1.0,
|
| 84 |
+
"mscale_all_dim": 1.0,
|
| 85 |
+
"original_max_position_embeddings": 4096,
|
| 86 |
+
"type": "yarn"
|
| 87 |
+
},
|
| 88 |
+
"rope_theta": 50000.0,
|
| 89 |
+
"routed_scaling_factor": 2.827,
|
| 90 |
+
"scoring_func": "sigmoid",
|
| 91 |
+
"seq_aux": true,
|
| 92 |
+
"tie_word_embeddings": false,
|
| 93 |
+
"topk_group": 1,
|
| 94 |
+
"topk_method": "noaux_tc",
|
| 95 |
+
"transformers_version": "4.57.1",
|
| 96 |
+
"use_cache": true,
|
| 97 |
+
"v_head_dim": 128,
|
| 98 |
+
"vocab_size": 163840
|
| 99 |
+
}
|
configuration_deepseek.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copy from https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/configuration_deepseek.py
|
| 2 |
+
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
from transformers.utils import logging
|
| 5 |
+
|
| 6 |
+
logger = logging.get_logger(__name__)
|
| 7 |
+
|
| 8 |
+
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 9 |
+
class DeepseekV3Config(PretrainedConfig):
|
| 10 |
+
r"""
|
| 11 |
+
This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
|
| 12 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 13 |
+
defaults will yield a similar configuration to that of the DeepSeek-V3.
|
| 14 |
+
|
| 15 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 16 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
vocab_size (`int`, *optional*, defaults to 129280):
|
| 21 |
+
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
| 22 |
+
`inputs_ids` passed when calling [`DeepseekV3Model`]
|
| 23 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 24 |
+
Dimension of the hidden representations.
|
| 25 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 26 |
+
Dimension of the MLP representations.
|
| 27 |
+
moe_intermediate_size (`int`, *optional*, defaults to 1407):
|
| 28 |
+
Dimension of the MoE representations.
|
| 29 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 30 |
+
Number of hidden layers in the Transformer decoder.
|
| 31 |
+
num_nextn_predict_layers (`int`, *optional*, defaults to 1):
|
| 32 |
+
Number of nextn predict layers in the DeepSeekV3 Model.
|
| 33 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 34 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 35 |
+
n_shared_experts (`int`, *optional*, defaults to None):
|
| 36 |
+
Number of shared experts, None means dense model.
|
| 37 |
+
n_routed_experts (`int`, *optional*, defaults to None):
|
| 38 |
+
Number of routed experts, None means dense model.
|
| 39 |
+
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
|
| 40 |
+
Scaling factor or routed experts.
|
| 41 |
+
topk_method (`str`, *optional*, defaults to `gready`):
|
| 42 |
+
Topk method used in routed gate.
|
| 43 |
+
n_group (`int`, *optional*, defaults to None):
|
| 44 |
+
Number of groups for routed experts.
|
| 45 |
+
topk_group (`int`, *optional*, defaults to None):
|
| 46 |
+
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
|
| 47 |
+
num_experts_per_tok (`int`, *optional*, defaults to None):
|
| 48 |
+
Number of selected experts, None means dense model.
|
| 49 |
+
moe_layer_freq (`int`, *optional*, defaults to 1):
|
| 50 |
+
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
|
| 51 |
+
first_k_dense_replace (`int`, *optional*, defaults to 0):
|
| 52 |
+
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
|
| 53 |
+
\--k dense layers--/
|
| 54 |
+
norm_topk_prob (`bool`, *optional*, defaults to False):
|
| 55 |
+
Whether to normalize the weights of the routed experts.
|
| 56 |
+
scoring_func (`str`, *optional*, defaults to 'softmax'):
|
| 57 |
+
Method of computing expert weights.
|
| 58 |
+
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
|
| 59 |
+
Auxiliary loss weight coefficient.
|
| 60 |
+
seq_aux = (`bool`, *optional*, defaults to True):
|
| 61 |
+
Whether to compute the auxiliary loss for each individual sample.
|
| 62 |
+
num_key_value_heads (`int`, *optional*):
|
| 63 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 64 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 65 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 66 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 67 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 68 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 69 |
+
`num_attention_heads`.
|
| 70 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 71 |
+
The non-linear activation function (function or string) in the decoder.
|
| 72 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 73 |
+
The maximum sequence length that this model might ever be used with.
|
| 74 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 75 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 76 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 77 |
+
The epsilon used by the rms normalization layers.
|
| 78 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 79 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 80 |
+
relevant if `config.is_decoder=True`.
|
| 81 |
+
pad_token_id (`int`, *optional*):
|
| 82 |
+
Padding token id.
|
| 83 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 84 |
+
Beginning of stream token id.
|
| 85 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 86 |
+
End of stream token id.
|
| 87 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 88 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 89 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
| 90 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
| 91 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 92 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 93 |
+
Whether to tie weight embeddings
|
| 94 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 95 |
+
The base period of the RoPE embeddings.
|
| 96 |
+
rope_scaling (`Dict`, *optional*):
|
| 97 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
| 98 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
| 99 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
| 100 |
+
`max_position_embeddings` to the expected new maximum.
|
| 101 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 102 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 103 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 104 |
+
The dropout ratio for the attention probabilities.
|
| 105 |
+
|
| 106 |
+
```python
|
| 107 |
+
>>> from transformers import DeepseekV3Model, DeepseekV3Config
|
| 108 |
+
|
| 109 |
+
>>> # Initializing a Deepseek-V3 style configuration
|
| 110 |
+
>>> configuration = DeepseekV3Config()
|
| 111 |
+
|
| 112 |
+
>>> # Accessing the model configuration
|
| 113 |
+
>>> configuration = model.config
|
| 114 |
+
```"""
|
| 115 |
+
|
| 116 |
+
model_type = "deepseek_v3"
|
| 117 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 118 |
+
|
| 119 |
+
def __init__(
|
| 120 |
+
self,
|
| 121 |
+
vocab_size=129280,
|
| 122 |
+
hidden_size=7168,
|
| 123 |
+
intermediate_size=18432,
|
| 124 |
+
moe_intermediate_size = 2048,
|
| 125 |
+
num_hidden_layers=61,
|
| 126 |
+
num_nextn_predict_layers=1,
|
| 127 |
+
num_attention_heads=128,
|
| 128 |
+
num_key_value_heads=128,
|
| 129 |
+
n_shared_experts = 1,
|
| 130 |
+
n_routed_experts = 256,
|
| 131 |
+
ep_size = 1,
|
| 132 |
+
routed_scaling_factor = 2.5,
|
| 133 |
+
kv_lora_rank = 512,
|
| 134 |
+
q_lora_rank = 1536,
|
| 135 |
+
qk_rope_head_dim = 64,
|
| 136 |
+
v_head_dim = 128,
|
| 137 |
+
qk_nope_head_dim = 128,
|
| 138 |
+
topk_method = 'noaux_tc',
|
| 139 |
+
n_group = 8,
|
| 140 |
+
topk_group = 4,
|
| 141 |
+
num_experts_per_tok = 8,
|
| 142 |
+
moe_layer_freq = 1,
|
| 143 |
+
first_k_dense_replace = 3,
|
| 144 |
+
norm_topk_prob = True,
|
| 145 |
+
scoring_func = 'sigmoid',
|
| 146 |
+
aux_loss_alpha = 0.001,
|
| 147 |
+
seq_aux = True,
|
| 148 |
+
hidden_act="silu",
|
| 149 |
+
max_position_embeddings=4096,
|
| 150 |
+
initializer_range=0.02,
|
| 151 |
+
rms_norm_eps=1e-6,
|
| 152 |
+
use_cache=True,
|
| 153 |
+
pad_token_id=None,
|
| 154 |
+
bos_token_id=0,
|
| 155 |
+
eos_token_id=1,
|
| 156 |
+
pretraining_tp=1,
|
| 157 |
+
tie_word_embeddings=False,
|
| 158 |
+
rope_theta=10000.0,
|
| 159 |
+
rope_scaling=None,
|
| 160 |
+
attention_bias=False,
|
| 161 |
+
attention_dropout=0.0,
|
| 162 |
+
**kwargs,
|
| 163 |
+
):
|
| 164 |
+
self.vocab_size = vocab_size
|
| 165 |
+
self.max_position_embeddings = max_position_embeddings
|
| 166 |
+
self.hidden_size = hidden_size
|
| 167 |
+
self.intermediate_size = intermediate_size
|
| 168 |
+
self.moe_intermediate_size = moe_intermediate_size
|
| 169 |
+
self.num_hidden_layers = num_hidden_layers
|
| 170 |
+
self.num_nextn_predict_layers = num_nextn_predict_layers
|
| 171 |
+
self.num_attention_heads = num_attention_heads
|
| 172 |
+
self.n_shared_experts = n_shared_experts
|
| 173 |
+
self.n_routed_experts = n_routed_experts
|
| 174 |
+
self.ep_size = ep_size
|
| 175 |
+
self.routed_scaling_factor = routed_scaling_factor
|
| 176 |
+
self.kv_lora_rank = kv_lora_rank
|
| 177 |
+
self.q_lora_rank = q_lora_rank
|
| 178 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
| 179 |
+
self.v_head_dim = v_head_dim
|
| 180 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
| 181 |
+
self.topk_method = topk_method
|
| 182 |
+
self.n_group = n_group
|
| 183 |
+
self.topk_group = topk_group
|
| 184 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 185 |
+
self.moe_layer_freq = moe_layer_freq
|
| 186 |
+
self.first_k_dense_replace = first_k_dense_replace
|
| 187 |
+
self.norm_topk_prob = norm_topk_prob
|
| 188 |
+
self.scoring_func = scoring_func
|
| 189 |
+
self.aux_loss_alpha = aux_loss_alpha
|
| 190 |
+
self.seq_aux = seq_aux
|
| 191 |
+
# for backward compatibility
|
| 192 |
+
if num_key_value_heads is None:
|
| 193 |
+
num_key_value_heads = num_attention_heads
|
| 194 |
+
|
| 195 |
+
self.num_key_value_heads = num_key_value_heads
|
| 196 |
+
self.hidden_act = hidden_act
|
| 197 |
+
self.initializer_range = initializer_range
|
| 198 |
+
self.rms_norm_eps = rms_norm_eps
|
| 199 |
+
self.pretraining_tp = pretraining_tp
|
| 200 |
+
self.use_cache = use_cache
|
| 201 |
+
self.rope_theta = rope_theta
|
| 202 |
+
self.rope_scaling = rope_scaling
|
| 203 |
+
self.attention_bias = attention_bias
|
| 204 |
+
self.attention_dropout = attention_dropout
|
| 205 |
+
|
| 206 |
+
super().__init__(
|
| 207 |
+
pad_token_id=pad_token_id,
|
| 208 |
+
bos_token_id=bos_token_id,
|
| 209 |
+
eos_token_id=eos_token_id,
|
| 210 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 211 |
+
**kwargs,
|
| 212 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token_id": 163586,
|
| 3 |
+
"max_length": 262144,
|
| 4 |
+
"transformers_version": "4.57.1"
|
| 5 |
+
}
|
model-00004-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c2a2ccbb19c35396788185385012a1a79e57edb81166ed42401cbaede98832b1
|
| 3 |
+
size 4994959584
|
model-00011-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a9199c784a8263238f7e1552f6c8ddc48113cb344bc2958b571eb3eb42d3b24f
|
| 3 |
+
size 4994959064
|
model-00013-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72adee2fb15d766998bea53f5865b1bf194eceb7e215ee3e9f01f31f1f07b3cc
|
| 3 |
+
size 4994959584
|
model-00017-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:97d4589a8ae3a687b6eee383438833fc5b906ba334b68da0cb39a4d2e4d515f6
|
| 3 |
+
size 4994959592
|
model-00022-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fa57599eb57c58a077b155fb7c48f13f8530f6f8641529a696b84e017b617c96
|
| 3 |
+
size 4994959584
|
model-00034-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:26e3233c646fe4818ef9b0af6528e17b3676eec26c8d9b2eaf6c506d4005caa3
|
| 3 |
+
size 4973857008
|
model-00035-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:769b2640f536857a97ab5f88378697e374a6579c9d28a58351b33ad83e14ad5b
|
| 3 |
+
size 4994959592
|
model-00037-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6a13d0cba926ca6ecd797c1c72750e6d56061a4ae0c931bdd84afa3b15fecffe
|
| 3 |
+
size 4973856480
|
model-00056-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22268c3f70f7c11d3f2773b0d7c41119cf4175f5c4a3fbaaae6467a7aa564d01
|
| 3 |
+
size 4994959336
|
model-00299-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:04da0f9f667c0fdab07172c21ba829a4b180f42e8e0e15739800cde268efbf89
|
| 3 |
+
size 4998136688
|
model-00316-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:59c02bf2103a9a1e7449f5a4fdf4b1b37203aae533e069c8fc3015a6feb895f3
|
| 3 |
+
size 4998136960
|
model-00325-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e222ccf03a4c35b3f1ef6b4e1e7a66eaf2d45d5e58a8a131bcdaffef8cdb91ac
|
| 3 |
+
size 4998136824
|
model-00401-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:92a585b6f12b09c74e4e61fbd6e5792bd23279ce768969bfff512581715cde21
|
| 3 |
+
size 4994960120
|
model-00415-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b883b30c3277edaa13ddd57ab2b87ecb292594da45ae40f91ef52c63f4c1e14b
|
| 3 |
+
size 4973857384
|
model-00418-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75598b1a2768da67a56d8fdd97aa297cb8203980ab8e3e302519667a0577bcea
|
| 3 |
+
size 4994960120
|
model-00424-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5817b674961c123b05261ae415bf96b57f5e3b9a24d61d579d5cfe2e6877884f
|
| 3 |
+
size 4973857512
|
model-00430-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5c2c0bf7c02a9d0acc8ccb7b4d5989afb228953c7e7a3da1167ff8f773baf5c8
|
| 3 |
+
size 4998136840
|
model-00431-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4a71a4cedb1ab7eb7edd6e33b84c5cb35d828f371879197825212bf7870b7e2e
|
| 3 |
+
size 4973857008
|
model-00433-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4181c86ff9950975e398d538d0c9c6636a49e4ab0c54eb1879d918fcf9480f46
|
| 3 |
+
size 4973857536
|
model-00434-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c5fd465d5f788af68f9d7ea26da9e2e1c3254e5c99b2cd16a57c09996c37f42d
|
| 3 |
+
size 4994960120
|
model-00435-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24de4225c7c30e6310b575fcd9abb15a3edbee4e65e3015e51c5f0c395afc2fb
|
| 3 |
+
size 4973857536
|
model-00447-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:41d5979f434c155a425b90c72b3ffdf1281206ac7d127b85e76a45f394a51dc4
|
| 3 |
+
size 4997875224
|
model-00453-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1410cc38f41af4f76528cfb0894e769ac2417c8078275fd4a9c99531a66a00a1
|
| 3 |
+
size 4973857536
|
model-00454-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb4b0959f7da1232a3974f4bc532559fc0612ba77be3fcfc2a247a069258a8f8
|
| 3 |
+
size 4994960120
|
model-00456-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e71b5318ea1067da5e6d63202c1a2202e73d2e29b7c1bdcad5c8bed02ce0f69b
|
| 3 |
+
size 4998136968
|
model-00463-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8dbbb79782256ff6a87725f2192f1b1a10cb44ca917421204351dd2c001dad26
|
| 3 |
+
size 4994960120
|
model-00468-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84ba42b4ebaa61263b33b4884b78e95940596da12e4c008653f7d14c2cb2c698
|
| 3 |
+
size 4994960120
|
model-00471-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:14f8a2fac8b4128330e754bb4fd7d0ecd76bf06771f8c8cbd97c9bef3fc5499a
|
| 3 |
+
size 4973857536
|
model-00478-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1d358e0f545d8c1450443cbc8a0a4098bf419de5fcdb3a459941d504439248ec
|
| 3 |
+
size 4973857536
|
model-00482-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:911d02c80774f402df76f6e9abc7bebbfa558ac50ede2891934e762b8471befd
|
| 3 |
+
size 4968384168
|
model-00483-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:45c11949d4f1ddaa72d94cfc371b1048c04a7f923f8f5decda43bab458f4f8bc
|
| 3 |
+
size 4995352144
|
model-00484-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5098ecc16ce1c552ed0c3cd3466e27e5af9b7a4856a8684ec832b0224722d596
|
| 3 |
+
size 4973857008
|
model-00487-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a97b3b6b247af852a78f69da49fe9d58a34bcb8d23c8b49d983c682bfbb94122
|
| 3 |
+
size 4994960120
|
model-00491-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cf50ec699cd37e83de75572e2053781b2c8a1af697c372da3e7dd92e1053e106
|
| 3 |
+
size 4998136984
|
model-00497-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4961b8f150a0dd5ce6ffc95ce8920108994a0cefd0a1177c840c8ded2562a0b
|
| 3 |
+
size 4973857536
|
model-00498-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a19908ac72121b66c3a8004aa292145f325262c658592ed6442cb6f4c69bf01e
|
| 3 |
+
size 4994960120
|
model-00499-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dea787809ae7e4a1e1ba191afbfedbf7785b21e29a717d159ee02a3096c0172e
|
| 3 |
+
size 4973857536
|
model-00518-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:79bbcd2fc296bfb1de9031b3ef91df85817ef5e359e992694daf0f3360402ec0
|
| 3 |
+
size 4988015168
|
model-00519-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c2cf7316ab4e2a321e0d17df91efd9d71b67c3999ec76709c45c4adb11a6af8b
|
| 3 |
+
size 4994959584
|
model-00520-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fbcc4f14f9c76c8e002ca82fd603685170d227c07ec34b595185dab015661b93
|
| 3 |
+
size 4973857376
|
model-00521-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1404c9149374fa03a62861f7b76cde5e39d7e9510c9990779637fa620522646
|
| 3 |
+
size 4994960120
|
model-00522-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:294685791ba67962720d0e03bf3ade07fc59568e0e98273329bb4138467d3de5
|
| 3 |
+
size 4973857536
|
model-00527-of-00527.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cf8d385a433c11531088dbf7f22ac16b71fc2366659d0a4d544d2a9ddb758bef
|
| 3 |
+
size 2348810368
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_end|>",
|
| 4 |
+
"<|im_user|>",
|
| 5 |
+
"<|im_assistant|>",
|
| 6 |
+
"<|start_header_id|>",
|
| 7 |
+
"<|end_header_id|>",
|
| 8 |
+
"[EOT]",
|
| 9 |
+
"<|im_system|>",
|
| 10 |
+
"<|im_middle|>"
|
| 11 |
+
],
|
| 12 |
+
"bos_token": {
|
| 13 |
+
"content": "[BOS]",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false
|
| 18 |
+
},
|
| 19 |
+
"eos_token": {
|
| 20 |
+
"content": "[EOS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false
|
| 25 |
+
},
|
| 26 |
+
"pad_token": {
|
| 27 |
+
"content": "[PAD]",
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"normalized": false,
|
| 30 |
+
"rstrip": false,
|
| 31 |
+
"single_word": false
|
| 32 |
+
},
|
| 33 |
+
"unk_token": {
|
| 34 |
+
"content": "[UNK]",
|
| 35 |
+
"lstrip": false,
|
| 36 |
+
"normalized": false,
|
| 37 |
+
"rstrip": false,
|
| 38 |
+
"single_word": false
|
| 39 |
+
}
|
| 40 |
+
}
|
tokenization_kimi.py
ADDED
|
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import tiktoken
|
| 3 |
+
|
| 4 |
+
from logging import getLogger
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import (
|
| 7 |
+
cast,
|
| 8 |
+
Tuple,
|
| 9 |
+
Dict,
|
| 10 |
+
Iterator,
|
| 11 |
+
List,
|
| 12 |
+
Union,
|
| 13 |
+
Optional,
|
| 14 |
+
)
|
| 15 |
+
from shutil import copyfile
|
| 16 |
+
from tiktoken.load import load_tiktoken_bpe
|
| 17 |
+
from tokenizers import AddedToken, pre_tokenizers, Regex
|
| 18 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 19 |
+
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
|
| 20 |
+
from typing import Any
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = getLogger(__name__)
|
| 24 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tiktoken.model"}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class TikTokenTokenizer(PreTrainedTokenizer):
|
| 28 |
+
"""
|
| 29 |
+
Tokenizing and encoding/decoding text using the Tiktoken tokenizer. See megatron/tokenizer/tiktoken_tokenizer.py.
|
| 30 |
+
|
| 31 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
| 32 |
+
this superclass for more information regarding those methods.
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
vocab_file (`str`):
|
| 36 |
+
The path to the Tiktoken model file.
|
| 37 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|begin_of_text|>",`):
|
| 38 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
| 39 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|end_of_text|>"`):
|
| 40 |
+
The end of sequence token.
|
| 41 |
+
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_249|>"`):
|
| 42 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 43 |
+
token instead. The second to last item in special_tokens.
|
| 44 |
+
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_250|>"`):
|
| 45 |
+
The token used for padding, for example when batching sequences of different lengths.
|
| 46 |
+
additional_special_tokens (list of `str`, *optional*):
|
| 47 |
+
A tuple or a list of additional tokens, which will be marked as `special`, meaning that they will be
|
| 48 |
+
skipped when decoding if `skip_special_tokens` is set to `True`.
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 52 |
+
|
| 53 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 54 |
+
|
| 55 |
+
special_tokens: Dict[str, int]
|
| 56 |
+
|
| 57 |
+
num_reserved_special_tokens = 256
|
| 58 |
+
|
| 59 |
+
pat_str = "|".join(
|
| 60 |
+
[
|
| 61 |
+
r"""[\p{Han}]+""",
|
| 62 |
+
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
|
| 63 |
+
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
|
| 64 |
+
r"""\p{N}{1,3}""",
|
| 65 |
+
r""" ?[^\s\p{L}\p{N}]+[\r\n]*""",
|
| 66 |
+
r"""\s*[\r\n]+""",
|
| 67 |
+
r"""\s+(?!\S)""",
|
| 68 |
+
r"""\s+""",
|
| 69 |
+
]
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
def __init__(
|
| 73 |
+
self,
|
| 74 |
+
vocab_file,
|
| 75 |
+
bos_token: Union[str, AddedToken]="[BOS]",
|
| 76 |
+
eos_token: Union[str, AddedToken]="[EOS]",
|
| 77 |
+
unk_token: Union[str, AddedToken, None]=None,
|
| 78 |
+
pad_token: Union[str, AddedToken, None]=None,
|
| 79 |
+
additional_special_tokens: List[str]=None,
|
| 80 |
+
added_tokens_decoder: Optional[dict] = None,
|
| 81 |
+
**kwargs,
|
| 82 |
+
):
|
| 83 |
+
assert os.path.isfile(vocab_file), vocab_file
|
| 84 |
+
|
| 85 |
+
if additional_special_tokens is None:
|
| 86 |
+
additional_special_tokens = [
|
| 87 |
+
"<|im_end|>",
|
| 88 |
+
"<|im_user|>",
|
| 89 |
+
"<|im_assistant|>",
|
| 90 |
+
"<|start_header_id|>",
|
| 91 |
+
"<|end_header_id|>",
|
| 92 |
+
"[EOT]",
|
| 93 |
+
"<|im_system|>",
|
| 94 |
+
"<|im_middle|>",
|
| 95 |
+
]
|
| 96 |
+
|
| 97 |
+
special_tokens_mapping = {
|
| 98 |
+
i: added_tokens_decoder[i].content for i in added_tokens_decoder
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
self.vocab_file = vocab_file
|
| 102 |
+
mergeable_ranks = load_tiktoken_bpe(vocab_file)
|
| 103 |
+
num_base_tokens = len(mergeable_ranks)
|
| 104 |
+
self.special_tokens = {
|
| 105 |
+
special_tokens_mapping.get(i, f"<|reserved_token_{i}|>"): i
|
| 106 |
+
for i in range(
|
| 107 |
+
num_base_tokens, num_base_tokens + self.num_reserved_special_tokens + 2
|
| 108 |
+
)
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
self.model = tiktoken.Encoding(
|
| 114 |
+
name=Path(vocab_file).name,
|
| 115 |
+
pat_str=self.pat_str,
|
| 116 |
+
mergeable_ranks=mergeable_ranks,
|
| 117 |
+
special_tokens=self.special_tokens,
|
| 118 |
+
)
|
| 119 |
+
logger.info(f"Reloaded tiktoken model from {vocab_file}")
|
| 120 |
+
|
| 121 |
+
self.n_words: int = self.model.n_vocab
|
| 122 |
+
# BOS / EOS token IDs
|
| 123 |
+
self.bos_id: int = self.special_tokens[str(bos_token)]
|
| 124 |
+
self.eos_id: int = self.special_tokens[str(eos_token)]
|
| 125 |
+
logger.info(
|
| 126 |
+
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
self.pad_id: int = self.special_tokens[str(pad_token)]
|
| 130 |
+
self.unk_id: int = self.special_tokens[str(unk_token)]
|
| 131 |
+
|
| 132 |
+
self.byte_encoder = bytes_to_unicode()
|
| 133 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 134 |
+
|
| 135 |
+
self.decoder = {}
|
| 136 |
+
for i in range(self.n_words):
|
| 137 |
+
# Taken from https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
|
| 138 |
+
decoding = ''.join([
|
| 139 |
+
self.byte_encoder[ord(char)] for char in
|
| 140 |
+
self.model.decode_single_token_bytes(i).decode('latin-1')
|
| 141 |
+
])
|
| 142 |
+
self.decoder[i] = decoding
|
| 143 |
+
|
| 144 |
+
self.encoder = {}
|
| 145 |
+
for i in range(self.n_words):
|
| 146 |
+
if i in self.decoder:
|
| 147 |
+
self.encoder[self.decoder[i]] = i
|
| 148 |
+
|
| 149 |
+
super().__init__(
|
| 150 |
+
bos_token=bos_token,
|
| 151 |
+
eos_token=eos_token,
|
| 152 |
+
unk_token=unk_token,
|
| 153 |
+
pad_token=pad_token,
|
| 154 |
+
additional_special_tokens=additional_special_tokens,
|
| 155 |
+
added_tokens_decoder=added_tokens_decoder,
|
| 156 |
+
**kwargs,
|
| 157 |
+
)
|
| 158 |
+
self.all_special_ids_set = set(self.all_special_ids)
|
| 159 |
+
|
| 160 |
+
def encode(
|
| 161 |
+
self,
|
| 162 |
+
text: str,
|
| 163 |
+
allow_special_tokens: bool = True,
|
| 164 |
+
**kwargs
|
| 165 |
+
) -> List[int]:
|
| 166 |
+
"""
|
| 167 |
+
Encodes a string into a list of token IDs.
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
text (str): The input string to be encoded.
|
| 171 |
+
|
| 172 |
+
Returns:
|
| 173 |
+
list[int]: A list of token IDs.
|
| 174 |
+
"""
|
| 175 |
+
# If there are other args, we should call super().encode because there are a lot of code
|
| 176 |
+
# to handle those args. supper().encode finally will call _tokenize and _convert_token_to_id.
|
| 177 |
+
# NOTE: our encode method is not compatible with the super().encode method,
|
| 178 |
+
# e.g. split_special_tokens' default is True in our encode method.
|
| 179 |
+
if len(kwargs) > 0:
|
| 180 |
+
logger.warning( f"Calling super().encode with {kwargs}" )
|
| 181 |
+
return super().encode(text, **kwargs)
|
| 182 |
+
|
| 183 |
+
assert type(text) is str
|
| 184 |
+
|
| 185 |
+
# The tiktoken tokenizer can handle <=400k chars without
|
| 186 |
+
# pyo3_runtime.PanicException.
|
| 187 |
+
TIKTOKEN_MAX_ENCODE_CHARS = 400_000
|
| 188 |
+
|
| 189 |
+
# https://github.com/openai/tiktoken/issues/195
|
| 190 |
+
# Here we iterate over subsequences and split if we exceed the limit
|
| 191 |
+
# of max consecutive non-whitespace or whitespace characters.
|
| 192 |
+
MAX_NO_WHITESPACES_CHARS = 25_000
|
| 193 |
+
|
| 194 |
+
texts = self.pre_tokenizer_process(text)
|
| 195 |
+
|
| 196 |
+
all_substrs = []
|
| 197 |
+
for text in texts:
|
| 198 |
+
substrs = (
|
| 199 |
+
substr
|
| 200 |
+
for i in range(0, len(text), TIKTOKEN_MAX_ENCODE_CHARS)
|
| 201 |
+
for substr in self._split_whitespaces_or_nonwhitespaces(
|
| 202 |
+
text[i: i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS
|
| 203 |
+
)
|
| 204 |
+
)
|
| 205 |
+
all_substrs.extend(substrs)
|
| 206 |
+
|
| 207 |
+
t: List[int] = []
|
| 208 |
+
for substr in all_substrs:
|
| 209 |
+
if allow_special_tokens:
|
| 210 |
+
t.extend(
|
| 211 |
+
# we should consider special token as a common token
|
| 212 |
+
self.model.encode(
|
| 213 |
+
substr,
|
| 214 |
+
allowed_special="all",
|
| 215 |
+
)
|
| 216 |
+
)
|
| 217 |
+
else:
|
| 218 |
+
t.extend(
|
| 219 |
+
# we should consider special token as a common token
|
| 220 |
+
self.model.encode(
|
| 221 |
+
substr,
|
| 222 |
+
disallowed_special=(),
|
| 223 |
+
)
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
return t
|
| 227 |
+
|
| 228 |
+
def decode(
|
| 229 |
+
self,
|
| 230 |
+
token_ids: Union[int, List[int]],
|
| 231 |
+
**kwargs
|
| 232 |
+
) -> str:
|
| 233 |
+
"""
|
| 234 |
+
Decodes a list of token IDs into a string.
|
| 235 |
+
|
| 236 |
+
Args:
|
| 237 |
+
token_ids (List[int]): The list of token IDs to be decoded.
|
| 238 |
+
|
| 239 |
+
Returns:
|
| 240 |
+
str: The decoded string.
|
| 241 |
+
"""
|
| 242 |
+
# If there are other args, we should call super().decode because there are a lot of code
|
| 243 |
+
# to handle those args. supper().encode finally will call convert_tokens_to_string and _convert_id_to_token.
|
| 244 |
+
if len(kwargs) > 0:
|
| 245 |
+
return super().decode(token_ids, **kwargs)
|
| 246 |
+
|
| 247 |
+
if type(token_ids) is int:
|
| 248 |
+
token_ids = [token_ids]
|
| 249 |
+
|
| 250 |
+
return self.model.decode(cast(List[int], token_ids))
|
| 251 |
+
|
| 252 |
+
@staticmethod
|
| 253 |
+
def _split_whitespaces_or_nonwhitespaces(
|
| 254 |
+
s: str, max_consecutive_slice_len: int
|
| 255 |
+
) -> Iterator[str]:
|
| 256 |
+
"""
|
| 257 |
+
Splits the string `s` so that each substring contains no more than `max_consecutive_slice_len`
|
| 258 |
+
consecutive whitespaces or consecutive non-whitespaces.
|
| 259 |
+
"""
|
| 260 |
+
current_slice_len = 0
|
| 261 |
+
current_slice_is_space = s[0].isspace() if len(s) > 0 else False
|
| 262 |
+
slice_start = 0
|
| 263 |
+
|
| 264 |
+
for i in range(len(s)):
|
| 265 |
+
is_now_space = s[i].isspace()
|
| 266 |
+
|
| 267 |
+
if current_slice_is_space ^ is_now_space:
|
| 268 |
+
current_slice_len = 1
|
| 269 |
+
current_slice_is_space = is_now_space
|
| 270 |
+
else:
|
| 271 |
+
current_slice_len += 1
|
| 272 |
+
if current_slice_len > max_consecutive_slice_len:
|
| 273 |
+
yield s[slice_start:i]
|
| 274 |
+
slice_start = i
|
| 275 |
+
current_slice_len = 1
|
| 276 |
+
yield s[slice_start:]
|
| 277 |
+
|
| 278 |
+
def pre_tokenizer_process(self, text: str) -> List[str]:
|
| 279 |
+
"""
|
| 280 |
+
pre-tokenizes the input text into a list of tokens.
|
| 281 |
+
This method is used to split the input text into smaller chunks for internal processing.
|
| 282 |
+
"""
|
| 283 |
+
return [text]
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
""" ----- Below are the abstract methods required by PreTrainedTokenizer ----- """
|
| 287 |
+
@property
|
| 288 |
+
def vocab_size(self) -> int:
|
| 289 |
+
return self.n_words
|
| 290 |
+
|
| 291 |
+
def get_vocab(self) -> Dict[str, int]:
|
| 292 |
+
return self.encoder
|
| 293 |
+
|
| 294 |
+
def _tokenize(self, text: str, **kwargs) -> List[str]:
|
| 295 |
+
return [
|
| 296 |
+
self.decoder[t]
|
| 297 |
+
for t in self.encode(text)
|
| 298 |
+
]
|
| 299 |
+
|
| 300 |
+
def _convert_token_to_id(self, token: str) -> int:
|
| 301 |
+
return self.encoder.get(token, self.unk_id)
|
| 302 |
+
|
| 303 |
+
def _convert_id_to_token(self, index: int) -> str:
|
| 304 |
+
return self.decoder.get(index)
|
| 305 |
+
|
| 306 |
+
@staticmethod
|
| 307 |
+
def clean_up_tokenization(out_string: str) -> str:
|
| 308 |
+
return out_string
|
| 309 |
+
|
| 310 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 311 |
+
text = ''.join(tokens)
|
| 312 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', 'replace')
|
| 313 |
+
return text
|
| 314 |
+
|
| 315 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 316 |
+
if not os.path.isdir(save_directory):
|
| 317 |
+
raise ValueError(f"vocabulary path ({save_directory}) should be a directory")
|
| 318 |
+
out_vocab_file = os.path.join(
|
| 319 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 323 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 324 |
+
|
| 325 |
+
return (out_vocab_file,)
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def apply_chat_template(
|
| 330 |
+
self, conversation, tools: Optional[list[dict]] = None,
|
| 331 |
+
tokenize: bool = False,
|
| 332 |
+
add_generation_prompt: bool = True,
|
| 333 |
+
**kwargs
|
| 334 |
+
):
|
| 335 |
+
tools = deep_sort_dict(tools)
|
| 336 |
+
return super().apply_chat_template(conversation,
|
| 337 |
+
tools=tools,
|
| 338 |
+
tokenize=tokenize,
|
| 339 |
+
add_generation_prompt=add_generation_prompt,
|
| 340 |
+
**kwargs)
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
def deep_sort_dict(obj: Any) -> Any:
|
| 344 |
+
if isinstance(obj, dict):
|
| 345 |
+
return {k: deep_sort_dict(v) for k, v in sorted(obj.items())}
|
| 346 |
+
if isinstance(obj, list):
|
| 347 |
+
return [deep_sort_dict(item) for item in obj]
|
| 348 |
+
return obj
|
| 349 |
+
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"163584": {
|
| 4 |
+
"content": "[BOS]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"163585": {
|
| 12 |
+
"content": "[EOS]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"163586": {
|
| 20 |
+
"content": "<|im_end|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"163587": {
|
| 28 |
+
"content": "<|im_user|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"163588": {
|
| 36 |
+
"content": "<|im_assistant|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"163590": {
|
| 44 |
+
"content": "<|start_header_id|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"163591": {
|
| 52 |
+
"content": "<|end_header_id|>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"163593": {
|
| 60 |
+
"content": "[EOT]",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"163594": {
|
| 68 |
+
"content": "<|im_system|>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"163595": {
|
| 76 |
+
"content": "<|tool_calls_section_begin|>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": false
|
| 82 |
+
},
|
| 83 |
+
"163596": {
|
| 84 |
+
"content": "<|tool_calls_section_end|>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": false
|
| 90 |
+
},
|
| 91 |
+
"163597": {
|
| 92 |
+
"content": "<|tool_call_begin|>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": false
|
| 98 |
+
},
|
| 99 |
+
"163598": {
|
| 100 |
+
"content": "<|tool_call_argument_begin|>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": false
|
| 106 |
+
},
|
| 107 |
+
"163599": {
|
| 108 |
+
"content": "<|tool_call_end|>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": false
|
| 114 |
+
},
|
| 115 |
+
"163601": {
|
| 116 |
+
"content": "<|im_middle|>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"163606": {
|
| 124 |
+
"content": "<think>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": false
|
| 130 |
+
},
|
| 131 |
+
"163607": {
|
| 132 |
+
"content": "</think>",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": false
|
| 138 |
+
},
|
| 139 |
+
"163838": {
|
| 140 |
+
"content": "[UNK]",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"163839": {
|
| 148 |
+
"content": "[PAD]",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
}
|
| 155 |
+
},
|
| 156 |
+
"additional_special_tokens": [
|
| 157 |
+
"<|im_end|>",
|
| 158 |
+
"<|im_user|>",
|
| 159 |
+
"<|im_assistant|>",
|
| 160 |
+
"<|start_header_id|>",
|
| 161 |
+
"<|end_header_id|>",
|
| 162 |
+
"[EOT]",
|
| 163 |
+
"<|im_system|>",
|
| 164 |
+
"<|im_middle|>"
|
| 165 |
+
],
|
| 166 |
+
"auto_map": {
|
| 167 |
+
"AutoTokenizer": [
|
| 168 |
+
"tokenization_kimi.TikTokenTokenizer",
|
| 169 |
+
null
|
| 170 |
+
]
|
| 171 |
+
},
|
| 172 |
+
"bos_token": "[BOS]",
|
| 173 |
+
"clean_up_tokenization_spaces": false,
|
| 174 |
+
"eos_token": "[EOS]",
|
| 175 |
+
"extra_special_tokens": {},
|
| 176 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 177 |
+
"pad_token": "[PAD]",
|
| 178 |
+
"tokenizer_class": "TikTokenTokenizer",
|
| 179 |
+
"unk_token": "[UNK]"
|
| 180 |
+
}
|