upgraedd commited on
Commit
626bff3
·
verified ·
1 Parent(s): 97dac73

Create Structural inquiry system 2.5

Browse files
Files changed (1) hide show
  1. Structural inquiry system 2.5 +904 -0
Structural inquiry system 2.5 ADDED
@@ -0,0 +1,904 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ STRUCTURAL INQUIRY SYSTEM v2.5
5
+ Engineering-Focused Knowledge Discovery with Concrete Improvements
6
+ """
7
+
8
+ from enum import Enum
9
+ from dataclasses import dataclass, field
10
+ from typing import List, Dict, Any, Optional, Tuple, Mapping, Callable
11
+ import hashlib
12
+ from datetime import datetime
13
+ from types import MappingProxyType
14
+ import numpy as np
15
+
16
+ # === CORE SYMBOLS ===
17
+ KNOWLEDGE_NODE = "●"
18
+ PATTERN_RECOGNITION = "⟁"
19
+ INQUIRY_MARKER = "?"
20
+ VALIDATION_SYMBOL = "✓"
21
+
22
+ # === KNOWLEDGE STATE TYPES ===
23
+
24
+ class KnowledgeStateType(Enum):
25
+ """Knowledge state types with clear semantics"""
26
+ PATTERN_DETECTION = "pattern_detection"
27
+ DATA_CORRELATION = "data_correlation"
28
+ CONTEXTUAL_ALIGNMENT = "contextual_alignment"
29
+ METHODOLOGICAL_STRUCTURE = "methodological_structure"
30
+ SOURCE_VERIFICATION = "source_verification"
31
+ TEMPORAL_CONSISTENCY = "temporal_consistency"
32
+ CROSS_DOMAIN_SYNTHESIS = "cross_domain_synthesis"
33
+ KNOWLEDGE_GAP_IDENTIFICATION = "knowledge_gap_identification"
34
+
35
+ @dataclass(frozen=True)
36
+ class KnowledgeState:
37
+ """Immutable knowledge state with provenance tracking"""
38
+ state_id: str
39
+ state_type: KnowledgeStateType
40
+ confidence_score: float
41
+ confidence_provenance: str # Track where confidence came from
42
+ methodological_rigor: float
43
+ data_patterns: Tuple[float, ...]
44
+ knowledge_domains: Tuple[str, ...]
45
+ temporal_markers: Tuple[str, ...]
46
+ research_constraints: Tuple[str, ...]
47
+ structural_description: str
48
+ validation_signature: str
49
+ state_hash: str = field(init=False)
50
+
51
+ def __post_init__(self):
52
+ hash_input = f"{self.state_id}:{self.state_type.value}:{self.confidence_score}:"
53
+ hash_input += f"{self.confidence_provenance}:{self.methodological_rigor}:"
54
+ hash_input += ":".join(str(v) for v in self.data_patterns[:10])
55
+ hash_input += ":".join(self.knowledge_domains)
56
+
57
+ state_hash = hashlib.sha3_512(hash_input.encode()).hexdigest()[:32]
58
+ object.__setattr__(self, 'state_hash', state_hash)
59
+
60
+ # === INQUIRY CATEGORIES ===
61
+
62
+ class InquiryCategory(Enum):
63
+ """Inquiry categories with clear prioritization semantics"""
64
+ CONFIDENCE_DISCREPANCY_ANALYSIS = "confidence_discrepancy_analysis"
65
+ METHODOLOGICAL_CONSISTENCY_CHECK = "methodological_consistency_check"
66
+ PATTERN_ANOMALY_DETECTION = "pattern_anomaly_detection"
67
+ TEMPORAL_ALIGNMENT_VALIDATION = "temporal_alignment_validation"
68
+ SOURCE_RELIABILITY_ASSESSMENT = "source_reliability_assessment"
69
+ CROSS_REFERENCE_VALIDATION = "cross_reference_validation"
70
+ KNOWLEDGE_COMPLETENESS_EVALUATION = "knowledge_completeness_evaluation"
71
+
72
+ # === PLUGGABLE ANALYSIS INTERFACE ===
73
+
74
+ class AnalysisResult:
75
+ """Structured analysis result for inquiry generation"""
76
+ def __init__(
77
+ self,
78
+ category: InquiryCategory,
79
+ basis_code: str,
80
+ basis_kwargs: Dict[str, Any],
81
+ verification_requirements: List[str],
82
+ investigation_confidence: float,
83
+ research_completion_estimate: float,
84
+ priority_score: float
85
+ ):
86
+ self.category = category
87
+ self.basis_code = basis_code
88
+ self.basis_kwargs = basis_kwargs
89
+ self.verification_requirements = verification_requirements
90
+ self.investigation_confidence = investigation_confidence
91
+ self.research_completion_estimate = research_completion_estimate
92
+ self.priority_score = priority_score
93
+
94
+ class InquiryAnalyzer:
95
+ """Protocol for pluggable analysis"""
96
+ def analyze(self, state: KnowledgeState) -> List[AnalysisResult]:
97
+ """Analyze state and return multiple potential inquiries"""
98
+ raise NotImplementedError
99
+
100
+ # === DEFAULT ANALYZER IMPLEMENTATION ===
101
+
102
+ class DefaultInquiryAnalyzer(InquiryAnalyzer):
103
+ """Default analyzer that generates multiple inquiry candidates"""
104
+
105
+ def __init__(self, basis_templates: Dict[str, Dict[str, Any]]):
106
+ self.basis_templates = basis_templates
107
+
108
+ def analyze(self, state: KnowledgeState) -> List[AnalysisResult]:
109
+ """Generate multiple inquiry candidates from state"""
110
+ results = []
111
+
112
+ # Check multiple independent criteria
113
+ if state.confidence_score < 0.7:
114
+ results.append(self._confidence_analysis(state))
115
+
116
+ if state.methodological_rigor < 0.65:
117
+ results.append(self._methodological_analysis(state))
118
+
119
+ if len(state.data_patterns) < 8:
120
+ results.append(self._pattern_analysis(state))
121
+
122
+ if len(state.temporal_markers) < 3:
123
+ results.append(self._temporal_analysis(state))
124
+
125
+ if len(state.knowledge_domains) > 2:
126
+ results.append(self._cross_domain_analysis(state))
127
+
128
+ # Always provide at least one analysis
129
+ if not results:
130
+ results.append(self._default_analysis(state))
131
+
132
+ return results
133
+
134
+ def _confidence_analysis(self, state: KnowledgeState) -> AnalysisResult:
135
+ """Analyze confidence discrepancies"""
136
+ confidence_factor = max(0.1, 0.8 - state.confidence_score)
137
+ return AnalysisResult(
138
+ category=InquiryCategory.CONFIDENCE_DISCREPANCY_ANALYSIS,
139
+ basis_code="CONFIDENCE_ANOMALY_INVESTIGATION",
140
+ basis_kwargs={
141
+ "score": state.confidence_score * 100,
142
+ "expected": 75.0,
143
+ "provenance": state.confidence_provenance
144
+ },
145
+ verification_requirements=[
146
+ "statistical_reanalysis",
147
+ "source_review",
148
+ "methodology_audit"
149
+ ],
150
+ investigation_confidence=confidence_factor,
151
+ research_completion_estimate=self._calculate_completion_estimate(3, confidence_factor),
152
+ priority_score=self._calculate_priority_score(confidence_factor, 0.9)
153
+ )
154
+
155
+ def _methodological_analysis(self, state: KnowledgeState) -> AnalysisResult:
156
+ """Analyze methodological issues"""
157
+ rigor_factor = max(0.1, 0.7 - state.methodological_rigor)
158
+ return AnalysisResult(
159
+ category=InquiryCategory.METHODOLOGICAL_CONSISTENCY_CHECK,
160
+ basis_code="METHODOLOGICAL_CONSISTENCY_QUESTION",
161
+ basis_kwargs={
162
+ "rigor": state.methodological_rigor * 100,
163
+ "method_type": "research_protocol"
164
+ },
165
+ verification_requirements=[
166
+ "protocol_review",
167
+ "reproducibility_check",
168
+ "peer_validation"
169
+ ],
170
+ investigation_confidence=rigor_factor,
171
+ research_completion_estimate=self._calculate_completion_estimate(3, rigor_factor),
172
+ priority_score=self._calculate_priority_score(rigor_factor, 0.8)
173
+ )
174
+
175
+ def _pattern_analysis(self, state: KnowledgeState) -> AnalysisResult:
176
+ """Analyze pattern anomalies"""
177
+ pattern_factor = len(state.data_patterns) / 10.0
178
+ return AnalysisResult(
179
+ category=InquiryCategory.PATTERN_ANOMALY_DETECTION,
180
+ basis_code="PATTERN_DEVIATION_ANALYSIS",
181
+ basis_kwargs={
182
+ "pattern_completeness": pattern_factor * 100,
183
+ "expected_patterns": 8
184
+ },
185
+ verification_requirements=[
186
+ "pattern_completeness_check",
187
+ "data_collection_review",
188
+ "statistical_validation"
189
+ ],
190
+ investigation_confidence=1.0 - pattern_factor,
191
+ research_completion_estimate=self._calculate_completion_estimate(3, pattern_factor),
192
+ priority_score=self._calculate_priority_score(1.0 - pattern_factor, 0.7)
193
+ )
194
+
195
+ def _temporal_analysis(self, state: KnowledgeState) -> AnalysisResult:
196
+ """Analyze temporal issues"""
197
+ temporal_factor = len(state.temporal_markers) / 3.0
198
+ return AnalysisResult(
199
+ category=InquiryCategory.TEMPORAL_ALIGNMENT_VALIDATION,
200
+ basis_code="TEMPORAL_CONSISTENCY_CHECK",
201
+ basis_kwargs={
202
+ "marker_count": len(state.temporal_markers),
203
+ "expected_markers": 3
204
+ },
205
+ verification_requirements=[
206
+ "temporal_sequence_verification",
207
+ "chronological_consistency_check"
208
+ ],
209
+ investigation_confidence=1.0 - temporal_factor,
210
+ research_completion_estimate=self._calculate_completion_estimate(2, temporal_factor),
211
+ priority_score=self._calculate_priority_score(1.0 - temporal_factor, 0.6)
212
+ )
213
+
214
+ def _cross_domain_analysis(self, state: KnowledgeState) -> AnalysisResult:
215
+ """Analyze cross-domain issues"""
216
+ domain_factor = min(1.0, len(state.knowledge_domains) / 5.0)
217
+ return AnalysisResult(
218
+ category=InquiryCategory.CROSS_REFERENCE_VALIDATION,
219
+ basis_code="CROSS_DOMAIN_ALIGNMENT_CHECK",
220
+ basis_kwargs={
221
+ "domain_count": len(state.knowledge_domains),
222
+ "domains": list(state.knowledge_domains)[:3]
223
+ },
224
+ verification_requirements=[
225
+ "cross_domain_correlation",
226
+ "independent_verification"
227
+ ],
228
+ investigation_confidence=domain_factor,
229
+ research_completion_estimate=self._calculate_completion_estimate(2, domain_factor),
230
+ priority_score=self._calculate_priority_score(domain_factor, 0.5)
231
+ )
232
+
233
+ def _default_analysis(self, state: KnowledgeState) -> AnalysisResult:
234
+ """Default analysis for well-formed states"""
235
+ return AnalysisResult(
236
+ category=InquiryCategory.KNOWLEDGE_COMPLETENESS_EVALUATION,
237
+ basis_code="BASELINE_VERIFICATION",
238
+ basis_kwargs={
239
+ "confidence_score": state.confidence_score * 100,
240
+ "rigor_score": state.methodological_rigor * 100
241
+ },
242
+ verification_requirements=["comprehensive_review"],
243
+ investigation_confidence=0.3,
244
+ research_completion_estimate=0.9,
245
+ priority_score=2.0 # Low priority baseline check
246
+ )
247
+
248
+ def _calculate_completion_estimate(self, requirement_count: int, confidence: float) -> float:
249
+ """Calculate research completion estimate"""
250
+ base = 0.5
251
+ requirement_impact = 0.9 ** requirement_count
252
+ confidence_impact = confidence * 0.4
253
+ return min(0.95, base * requirement_impact + confidence_impact)
254
+
255
+ def _calculate_priority_score(self, investigation_confidence: float, weight: float) -> float:
256
+ """Calculate priority score with clear semantics"""
257
+ base_score = investigation_confidence * weight
258
+ return round(base_score * 10, 2)
259
+
260
+ # === INQUIRY BASIS TEMPLATES ===
261
+
262
+ INQUIRY_BASIS_TEMPLATES = {
263
+ "CONFIDENCE_ANOMALY_INVESTIGATION": {
264
+ "template": "Confidence score of {score}% ({provenance}) differs from expected baseline of {expected}%",
265
+ "investigation_focus": "confidence_validation"
266
+ },
267
+ "METHODOLOGICAL_CONSISTENCY_QUESTION": {
268
+ "template": "Methodological rigor rating of {rigor}% suggests review of {method_type} may be beneficial",
269
+ "investigation_focus": "methodological_review"
270
+ },
271
+ "PATTERN_DEVIATION_ANALYSIS": {
272
+ "template": "Pattern completeness at {pattern_completeness}% with {expected_patterns} expected patterns",
273
+ "investigation_focus": "pattern_analysis"
274
+ },
275
+ "TEMPORAL_CONSISTENCY_CHECK": {
276
+ "template": "Temporal markers: {marker_count} present, {expected_markers} expected",
277
+ "investigation_focus": "temporal_validation"
278
+ },
279
+ "CROSS_DOMAIN_ALIGNMENT_CHECK": {
280
+ "template": "Cross-domain analysis across {domain_count} domains: {domains}",
281
+ "investigation_focus": "cross_domain_validation"
282
+ },
283
+ "BASELINE_VERIFICATION": {
284
+ "template": "Baseline verification: confidence={confidence_score}%, rigor={rigor_score}%",
285
+ "investigation_focus": "comprehensive_review"
286
+ }
287
+ }
288
+
289
+ # === INQUIRY ARTIFACT ===
290
+
291
+ @dataclass(frozen=True)
292
+ class InquiryArtifact:
293
+ """Deterministic inquiry artifact with robust priority calculation"""
294
+ artifact_id: str
295
+ source_state_hash: str
296
+ inquiry_category: InquiryCategory
297
+ investigation_priority: int # 1-10 scale with clear semantics
298
+ knowledge_domains_involved: Tuple[str, ...]
299
+ basis_code: str
300
+ inquiry_description: str
301
+ verification_requirements: Tuple[str, ...]
302
+ investigation_confidence: float
303
+ research_completion_estimate: float
304
+ confidence_provenance: str
305
+ artifact_hash: str
306
+ creation_context: 'CreationContext'
307
+
308
+ @classmethod
309
+ def create(
310
+ cls,
311
+ knowledge_state: KnowledgeState,
312
+ analysis_result: AnalysisResult,
313
+ basis_templates: Dict[str, Dict[str, Any]],
314
+ creation_context: 'CreationContext'
315
+ ) -> 'InquiryArtifact':
316
+ """Create inquiry artifact with deterministic hash"""
317
+
318
+ # Format inquiry description
319
+ template_data = basis_templates.get(analysis_result.basis_code, {})
320
+ description_template = template_data.get("template", "Analysis required")
321
+ inquiry_description = description_template.format(**analysis_result.basis_kwargs)
322
+
323
+ # Calculate deterministic priority (1-10)
324
+ priority_value = max(1, min(10, int(round(analysis_result.priority_score))))
325
+
326
+ # Generate deterministic hash
327
+ hash_input = f"{knowledge_state.state_hash}:{analysis_result.category.value}:"
328
+ hash_input += f"{analysis_result.basis_code}:{priority_value}:"
329
+ hash_input += ":".join(analysis_result.verification_requirements)
330
+ hash_input += creation_context.context_hash
331
+
332
+ artifact_hash = hashlib.sha3_512(hash_input.encode()).hexdigest()[:32]
333
+ artifact_id = f"inq_{artifact_hash[:16]}"
334
+
335
+ return cls(
336
+ artifact_id=artifact_id,
337
+ source_state_hash=knowledge_state.state_hash,
338
+ inquiry_category=analysis_result.category,
339
+ investigation_priority=priority_value,
340
+ knowledge_domains_involved=knowledge_state.knowledge_domains,
341
+ basis_code=analysis_result.basis_code,
342
+ inquiry_description=inquiry_description,
343
+ verification_requirements=tuple(analysis_result.verification_requirements),
344
+ investigation_confidence=analysis_result.investigation_confidence,
345
+ research_completion_estimate=analysis_result.research_completion_estimate,
346
+ confidence_provenance=knowledge_state.confidence_provenance,
347
+ artifact_hash=artifact_hash,
348
+ creation_context=creation_context
349
+ )
350
+
351
+ def reference_information(self) -> Mapping[str, Any]:
352
+ """Immutable reference information"""
353
+ return MappingProxyType({
354
+ "artifact_id": self.artifact_id,
355
+ "source_state": self.source_state_hash[:12],
356
+ "inquiry_category": self.inquiry_category.value,
357
+ "investigation_priority": self.investigation_priority,
358
+ "priority_semantics": self._priority_semantics(),
359
+ "knowledge_domains": list(self.knowledge_domains_involved),
360
+ "basis": {
361
+ "code": self.basis_code,
362
+ "description": self.inquiry_description,
363
+ "confidence_provenance": self.confidence_provenance
364
+ },
365
+ "verification_requirements": list(self.verification_requirements),
366
+ "investigation_confidence": round(self.investigation_confidence, 3),
367
+ "research_completion_estimate": round(self.research_completion_estimate, 3),
368
+ "artifact_hash": self.artifact_hash,
369
+ "creation_context": self.creation_context.reference_data()
370
+ })
371
+
372
+ def _priority_semantics(self) -> str:
373
+ """Document priority semantics"""
374
+ if self.investigation_priority >= 9:
375
+ return "critical_immediate_attention"
376
+ elif self.investigation_priority >= 7:
377
+ return "high_priority_review"
378
+ elif self.investigation_priority >= 5:
379
+ return "moderate_priority"
380
+ elif self.investigation_priority >= 3:
381
+ return "low_priority_backlog"
382
+ else:
383
+ return "informational_only"
384
+
385
+ # === CREATION CONTEXT ===
386
+
387
+ @dataclass(frozen=True)
388
+ class CreationContext:
389
+ """Immutable creation context"""
390
+ system_version: str
391
+ generation_timestamp: str
392
+ research_environment: str
393
+ deterministic_seed: Optional[int]
394
+ context_hash: str = field(init=False)
395
+
396
+ def __post_init__(self):
397
+ hash_input = f"{self.system_version}:{self.generation_timestamp}:"
398
+ hash_input += f"{self.research_environment}:{self.deterministic_seed or 'none'}"
399
+
400
+ context_hash = hashlib.sha3_512(hash_input.encode()).hexdigest()[:32]
401
+ object.__setattr__(self, 'context_hash', context_hash)
402
+
403
+ @classmethod
404
+ def create(
405
+ cls,
406
+ research_environment: str = "knowledge_discovery_system",
407
+ deterministic_seed: Optional[int] = None,
408
+ clock_source: Callable[[], datetime] = datetime.now
409
+ ) -> 'CreationContext':
410
+ """Factory method with optional determinism"""
411
+ return cls(
412
+ system_version="structural_inquiry_v2.5",
413
+ generation_timestamp=clock_source().isoformat(),
414
+ research_environment=research_environment,
415
+ deterministic_seed=deterministic_seed
416
+ )
417
+
418
+ def reference_data(self) -> Mapping[str, Any]:
419
+ return MappingProxyType({
420
+ "system_version": self.system_version,
421
+ "generation_timestamp": self.generation_timestamp,
422
+ "research_environment": self.research_environment,
423
+ "deterministic_mode": self.deterministic_seed is not None,
424
+ "context_hash": self.context_hash[:12]
425
+ })
426
+
427
+ # === INQUIRY GENERATOR ===
428
+
429
+ class InquiryGenerator:
430
+ """
431
+ Deterministic inquiry generator with pluggable analysis
432
+ """
433
+
434
+ def __init__(
435
+ self,
436
+ analyzer: Optional[InquiryAnalyzer] = None,
437
+ creation_context: Optional[CreationContext] = None,
438
+ deterministic_seed: Optional[int] = None
439
+ ):
440
+ self.analyzer = analyzer or DefaultInquiryAnalyzer(INQUIRY_BASIS_TEMPLATES)
441
+ self.creation_context = creation_context or CreationContext.create(
442
+ deterministic_seed=deterministic_seed
443
+ )
444
+ self.generated_inquiries: List[InquiryArtifact] = []
445
+
446
+ # Set deterministic seed if provided
447
+ if deterministic_seed is not None:
448
+ np.random.seed(deterministic_seed)
449
+
450
+ def generate_inquiries(
451
+ self,
452
+ knowledge_states: Tuple[KnowledgeState, ...],
453
+ confidence_threshold: float = 0.7
454
+ ) -> Tuple[InquiryArtifact, ...]:
455
+ """Generate inquiries from knowledge states"""
456
+
457
+ inquiries = []
458
+
459
+ for state in knowledge_states:
460
+ # Use analyzer to get multiple potential inquiries
461
+ analysis_results = self.analyzer.analyze(state)
462
+
463
+ for result in analysis_results:
464
+ # Only generate inquiries that meet threshold
465
+ if result.investigation_confidence >= confidence_threshold:
466
+ inquiry = InquiryArtifact.create(
467
+ knowledge_state=state,
468
+ analysis_result=result,
469
+ basis_templates=INQUIRY_BASIS_TEMPLATES,
470
+ creation_context=self.creation_context
471
+ )
472
+ inquiries.append(inquiry)
473
+ self.generated_inquiries.append(inquiry)
474
+
475
+ return tuple(inquiries)
476
+
477
+ # === RESEARCH SYSTEM INTERFACE ===
478
+
479
+ class ResearchSystem:
480
+ """Abstract research system interface"""
481
+
482
+ async def research(self, topic: str, **kwargs) -> Dict[str, Any]:
483
+ """Conduct research on topic (must be implemented)"""
484
+ raise NotImplementedError
485
+
486
+ # === INTEGRATED KNOWLEDGE DISCOVERY ===
487
+
488
+ class IntegratedKnowledgeDiscovery:
489
+ """
490
+ Integrated system with clear async boundaries and determinism
491
+ """
492
+
493
+ def __init__(
494
+ self,
495
+ research_system: ResearchSystem,
496
+ deterministic_seed: Optional[int] = None
497
+ ):
498
+ """
499
+ Initialize with concrete research system
500
+
501
+ Args:
502
+ research_system: Must implement ResearchSystem interface
503
+ deterministic_seed: Optional seed for reproducible results
504
+ """
505
+ if not isinstance(research_system, ResearchSystem):
506
+ raise TypeError("research_system must implement ResearchSystem interface")
507
+
508
+ self.research_system = research_system
509
+ self.deterministic_seed = deterministic_seed
510
+ self.inquiry_generator = InquiryGenerator(deterministic_seed=deterministic_seed)
511
+ self.discovery_history: List[Dict[str, Any]] = []
512
+
513
+ async def conduct_research_with_inquiries(
514
+ self,
515
+ research_topic: str,
516
+ confidence_threshold: float = 0.7,
517
+ **research_kwargs
518
+ ) -> Dict[str, Any]:
519
+ """Conduct research and generate knowledge inquiries"""
520
+
521
+ # 1. Conduct research using the provided system
522
+ research_result = await self.research_system.research(research_topic, **research_kwargs)
523
+
524
+ # 2. Convert to knowledge state
525
+ knowledge_state = self._convert_to_knowledge_state(research_result)
526
+
527
+ # 3. Generate inquiries
528
+ knowledge_states = (knowledge_state,)
529
+ inquiry_artifacts = self.inquiry_generator.generate_inquiries(
530
+ knowledge_states,
531
+ confidence_threshold
532
+ )
533
+
534
+ # 4. Create inquiry collection
535
+ inquiry_collection = {
536
+ "collection_id": f"inq_coll_{hashlib.sha256(knowledge_state.state_hash.encode()).hexdigest()[:16]}",
537
+ "research_topic": research_topic,
538
+ "knowledge_state_hash": knowledge_state.state_hash[:12],
539
+ "inquiry_count": len(inquiry_artifacts),
540
+ "generation_timestamp": datetime.utcnow().isoformat(),
541
+ "confidence_threshold": confidence_threshold,
542
+ "deterministic_mode": self.deterministic_seed is not None,
543
+ "inquiries": [i.reference_information() for i in inquiry_artifacts]
544
+ }
545
+
546
+ # 5. Store and return
547
+ self.discovery_history.append({
548
+ "research_topic": research_topic,
549
+ "research_result": research_result,
550
+ "knowledge_state": knowledge_state,
551
+ "inquiry_collection": inquiry_collection,
552
+ "inquiry_artifacts": inquiry_artifacts
553
+ })
554
+
555
+ return {
556
+ "research_topic": research_topic,
557
+ "research_summary": {
558
+ "confidence_score": research_result.get("confidence_score", 0.5),
559
+ "methodological_rigor": research_result.get("methodological_rigor", 0.5),
560
+ "domains": research_result.get("knowledge_domains", [])
561
+ },
562
+ "inquiry_generation": {
563
+ "inquiries_generated": len(inquiry_artifacts),
564
+ "inquiry_collection_id": inquiry_collection["collection_id"],
565
+ "priority_distribution": self._summarize_priorities(inquiry_artifacts),
566
+ "confidence_threshold_met": len(inquiry_artifacts) > 0
567
+ }
568
+ }
569
+
570
+ def _convert_to_knowledge_state(
571
+ self,
572
+ research_result: Dict[str, Any]
573
+ ) -> KnowledgeState:
574
+ """Convert research result to knowledge state"""
575
+
576
+ # Extract with provenance tracking
577
+ confidence_score = research_result.get("confidence_score", 0.5)
578
+ confidence_provenance = research_result.get(
579
+ "confidence_provenance",
580
+ "derived_from_research"
581
+ )
582
+
583
+ # Determine state type
584
+ if confidence_score < 0.6:
585
+ state_type = KnowledgeStateType.SOURCE_VERIFICATION
586
+ elif "pattern" in str(research_result.get("structural_description", "")).lower():
587
+ state_type = KnowledgeStateType.PATTERN_DETECTION
588
+ elif len(research_result.get("knowledge_domains", [])) > 2:
589
+ state_type = KnowledgeStateType.CROSS_DOMAIN_SYNTHESIS
590
+ else:
591
+ state_type = KnowledgeStateType.DATA_CORRELATION
592
+
593
+ # Generate patterns deterministically
594
+ if self.deterministic_seed is not None:
595
+ # Deterministic pattern generation
596
+ pattern_seed = hash(f"{self.deterministic_seed}:{research_result.get('content_hash', '')}")
597
+ np.random.seed(pattern_seed % (2**32))
598
+ data_patterns = tuple(np.random.randn(8).tolist())
599
+ else:
600
+ # Use provided pattern or generate default
601
+ provided_patterns = research_result.get("data_patterns", [])
602
+ data_patterns = tuple(provided_patterns[:8]) if provided_patterns else tuple(np.sin(np.arange(8) * 0.785).tolist())
603
+
604
+ # Generate structural description
605
+ structural_description = self._generate_structural_description(research_result)
606
+
607
+ # Generate validation signature
608
+ validation_signature = hashlib.sha3_512(
609
+ f"{research_result.get('content_hash', '')}:{self.deterministic_seed or 'stochastic'}".encode()
610
+ ).hexdigest()[:32]
611
+
612
+ return KnowledgeState(
613
+ state_id=f"knowledge_state_{research_result.get('content_hash', 'unknown')[:12]}",
614
+ state_type=state_type,
615
+ confidence_score=confidence_score,
616
+ confidence_provenance=confidence_provenance,
617
+ methodological_rigor=research_result.get("methodological_rigor", 0.5),
618
+ data_patterns=data_patterns,
619
+ knowledge_domains=tuple(research_result.get("knowledge_domains", ["general"])),
620
+ temporal_markers=(
621
+ research_result.get("timestamp", ""),
622
+ datetime.utcnow().isoformat()
623
+ ),
624
+ research_constraints=self._extract_constraints(research_result),
625
+ structural_description=structural_description,
626
+ validation_signature=validation_signature
627
+ )
628
+
629
+ def _generate_structural_description(
630
+ self,
631
+ research_result: Dict[str, Any]
632
+ ) -> str:
633
+ """Generate structural description"""
634
+ components = []
635
+
636
+ confidence = research_result.get("confidence_score", 0.5)
637
+ provenance = research_result.get("confidence_provenance", "unstated")
638
+
639
+ if confidence < 0.6:
640
+ components.append(f"Low confidence ({confidence:.2f}) from {provenance}")
641
+ elif confidence > 0.8:
642
+ components.append(f"High confidence ({confidence:.2f}) from {provenance}")
643
+
644
+ rigor = research_result.get("methodological_rigor", 0.5)
645
+ if rigor < 0.6:
646
+ components.append(f"Methodological rigor: {rigor:.2f}")
647
+
648
+ domains = research_result.get("knowledge_domains", [])
649
+ if len(domains) > 2:
650
+ components.append(f"Cross-domain: {len(domains)} domains")
651
+
652
+ if not components:
653
+ components.append("Standard research structure")
654
+
655
+ return f"{KNOWLEDGE_NODE} " + "; ".join(components)
656
+
657
+ def _extract_constraints(
658
+ self,
659
+ research_result: Dict[str, Any]
660
+ ) -> Tuple[str, ...]:
661
+ """Extract research constraints"""
662
+ constraints = []
663
+
664
+ if research_result.get("confidence_score", 0) < 0.7:
665
+ constraints.append("confidence_verification_needed")
666
+
667
+ if research_result.get("methodological_rigor", 0) < 0.6:
668
+ constraints.append("methodology_review_recommended")
669
+
670
+ if not research_result.get("source_references", []):
671
+ constraints.append("source_corroboration_required")
672
+
673
+ if not constraints:
674
+ constraints.append("standard_verification_protocol")
675
+
676
+ return tuple(constraints)
677
+
678
+ def _summarize_priorities(
679
+ self,
680
+ inquiry_artifacts: Tuple[InquiryArtifact, ...]
681
+ ) -> Dict[str, Any]:
682
+ """Summarize inquiry priorities with clear semantics"""
683
+ if not inquiry_artifacts:
684
+ return {"message": "No inquiries generated", "priority_levels": {}}
685
+
686
+ priority_summary = {}
687
+ for artifact in inquiry_artifacts:
688
+ priority = artifact.investigation_priority
689
+ if priority not in priority_summary:
690
+ priority_summary[priority] = {
691
+ "count": 0,
692
+ "domains": set(),
693
+ "semantics": artifact._priority_semantics()
694
+ }
695
+
696
+ priority_summary[priority]["count"] += 1
697
+ priority_summary[priority]["domains"].update(artifact.knowledge_domains_involved)
698
+
699
+ # Convert sets to lists
700
+ for priority in priority_summary:
701
+ priority_summary[priority]["domains"] = list(priority_summary[priority]["domains"])
702
+
703
+ return {
704
+ "total_priorities": len(priority_summary),
705
+ "highest_priority": max(priority_summary.keys()),
706
+ "priority_distribution": priority_summary
707
+ }
708
+
709
+ def get_statistics(self) -> Dict[str, Any]:
710
+ """Get system statistics"""
711
+ total_inquiries = len(self.inquiry_generator.generated_inquiries)
712
+
713
+ # Calculate category distribution
714
+ category_counts = {}
715
+ for inquiry in self.inquiry_generator.generated_inquiries:
716
+ category = inquiry.inquiry_category.value
717
+ category_counts[category] = category_counts.get(category, 0) + 1
718
+
719
+ # Calculate average metrics
720
+ if total_inquiries > 0:
721
+ avg_confidence = np.mean([i.investigation_confidence for i in self.inquiry_generator.generated_inquiries])
722
+ avg_priority = np.mean([i.investigation_priority for i in self.inquiry_generator.generated_inquiries])
723
+ else:
724
+ avg_confidence = 0.0
725
+ avg_priority = 0.0
726
+
727
+ return {
728
+ "system": "Integrated Knowledge Discovery v2.5",
729
+ "research_sessions": len(self.discovery_history),
730
+ "total_inquiries_generated": total_inquiries,
731
+ "category_distribution": category_counts,
732
+ "average_investigation_confidence": round(float(avg_confidence), 3),
733
+ "average_investigation_priority": round(float(avg_priority), 1),
734
+ "deterministic_mode": self.deterministic_seed is not None,
735
+ "engineering_properties": {
736
+ "immutable_data_structures": True,
737
+ "deterministic_hashes": True,
738
+ "pluggable_analyzers": True,
739
+ "clear_async_boundaries": True,
740
+ "priority_semantics_documented": True
741
+ }
742
+ }
743
+
744
+ # === CONCRETE RESEARCH SYSTEM EXAMPLE ===
745
+
746
+ class ConcreteResearchSystem(ResearchSystem):
747
+ """Example research system with proper async implementation"""
748
+
749
+ def __init__(self, deterministic_seed: Optional[int] = None):
750
+ self.deterministic_seed = deterministic_seed
751
+ if deterministic_seed is not None:
752
+ np.random.seed(deterministic_seed)
753
+
754
+ async def research(self, topic: str, **kwargs) -> Dict[str, Any]:
755
+ """Conduct research (simulated for example)"""
756
+ # Simulate async research delay
757
+ import asyncio
758
+ await asyncio.sleep(0.1) # Simulate network/processing
759
+
760
+ # Generate deterministic or random results
761
+ if self.deterministic_seed is not None:
762
+ # Deterministic based on topic
763
+ topic_hash = hash(topic) % 1000
764
+ confidence = 0.5 + (topic_hash % 500) / 1000 # 0.5-1.0
765
+ rigor = 0.4 + (topic_hash % 600) / 1000 # 0.4-1.0
766
+ else:
767
+ # Random results
768
+ confidence = np.random.random() * 0.3 + 0.5 # 0.5-0.8
769
+ rigor = np.random.random() * 0.4 + 0.4 # 0.4-0.8
770
+
771
+ return {
772
+ "topic": topic,
773
+ "content_hash": hashlib.sha256(topic.encode()).hexdigest()[:32],
774
+ "confidence_score": confidence,
775
+ "confidence_provenance": "simulated_analysis",
776
+ "methodological_rigor": rigor,
777
+ "knowledge_domains": self._identify_domains(topic),
778
+ "structural_description": f"Research on {topic}",
779
+ "timestamp": datetime.utcnow().isoformat(),
780
+ "data_patterns": np.sin(np.arange(10) * 0.628).tolist(),
781
+ "source_references": [f"ref_{i}" for i in range(np.random.randint(1, 4))]
782
+ }
783
+
784
+ def _identify_domains(self, topic: str) -> List[str]:
785
+ """Identify domains from topic"""
786
+ domains = []
787
+ topic_lower = topic.lower()
788
+
789
+ if any(word in topic_lower for word in ["quantum", "physics"]):
790
+ domains.append("physics")
791
+ if any(word in topic_lower for word in ["history", "ancient"]):
792
+ domains.append("history")
793
+ if any(word in topic_lower for word in ["consciousness", "mind"]):
794
+ domains.append("psychology")
795
+ if any(word in topic_lower for word in ["pattern", "analysis"]):
796
+ domains.append("mathematics")
797
+
798
+ return domains if domains else ["interdisciplinary"]
799
+
800
+ # === TEST UTILITIES ===
801
+
802
+ def run_deterministic_test() -> bool:
803
+ """Test deterministic reproducibility"""
804
+ print("Testing deterministic reproducibility...")
805
+
806
+ # Run with same seed
807
+ research_system1 = ConcreteResearchSystem(deterministic_seed=42)
808
+ system1 = IntegratedKnowledgeDiscovery(research_system1, deterministic_seed=42)
809
+
810
+ research_system2 = ConcreteResearchSystem(deterministic_seed=42)
811
+ system2 = IntegratedKnowledgeDiscovery(research_system2, deterministic_seed=42)
812
+
813
+ import asyncio
814
+
815
+ # Run same research
816
+ loop = asyncio.new_event_loop()
817
+ asyncio.set_event_loop(loop)
818
+
819
+ result1 = loop.run_until_complete(
820
+ system1.conduct_research_with_inquiries("Test topic")
821
+ )
822
+ result2 = loop.run_until_complete(
823
+ system2.conduct_research_with_inquiries("Test topic")
824
+ )
825
+
826
+ loop.close()
827
+
828
+ # Compare results
829
+ inquiries1 = result1["inquiry_generation"]["inquiries_generated"]
830
+ inquiries2 = result2["inquiry_generation"]["inquiries_generated"]
831
+
832
+ print(f" System 1 inquiries: {inquiries1}")
833
+ print(f" System 2 inquiries: {inquiries2}")
834
+ print(f" Results identical: {inquiries1 == inquiries2}")
835
+
836
+ return inquiries1 == inquiries2
837
+
838
+ # === MAIN ===
839
+
840
+ async def main():
841
+ """Demonstrate the system"""
842
+ print(f"""
843
+ {'='*70}
844
+ STRUCTURAL INQUIRY SYSTEM v2.5
845
+ Engineering-Focused Knowledge Discovery
846
+ {'='*70}
847
+ """)
848
+
849
+ # Run deterministic test
850
+ if run_deterministic_test():
851
+ print(f"\n{VALIDATION_SYMBOL} Deterministic reproducibility verified")
852
+ else:
853
+ print(f"\n{INQUIRY_MARKER} Non-deterministic behavior detected")
854
+
855
+ # Create and run system
856
+ research_system = ConcreteResearchSystem()
857
+ discovery_system = IntegratedKnowledgeDiscovery(research_system)
858
+
859
+ topics = [
860
+ "Quantum pattern analysis techniques",
861
+ "Historical methodology consistency",
862
+ "Cross-domain verification protocols"
863
+ ]
864
+
865
+ for i, topic in enumerate(topics, 1):
866
+ print(f"\n{PATTERN_RECOGNITION} RESEARCH SESSION {i}: {topic}")
867
+ print(f"{'-'*60}")
868
+
869
+ result = await discovery_system.conduct_research_with_inquiries(
870
+ topic,
871
+ confidence_threshold=0.6
872
+ )
873
+
874
+ inquiries = result["inquiry_generation"]["inquiries_generated"]
875
+ priorities = result["inquiry_generation"]["priority_distribution"]
876
+
877
+ print(f" {VALIDATION_SYMBOL} Research completed")
878
+ print(f" {KNOWLEDGE_NODE} Inquiries generated: {inquiries}")
879
+
880
+ if inquiries > 0:
881
+ for priority, data in priorities.get("priority_distribution", {}).items():
882
+ semantics = data.get("semantics", "unknown")
883
+ print(f" Priority {priority} ({semantics}): {data['count']} inquiries")
884
+
885
+ # Display statistics
886
+ stats = discovery_system.get_statistics()
887
+ print(f"\n{'='*70}")
888
+ print("SYSTEM STATISTICS")
889
+ print(f"{'='*70}")
890
+
891
+ print(f"\nResearch sessions: {stats['research_sessions']}")
892
+ print(f"Total inquiries: {stats['total_inquiries_generated']}")
893
+ print(f"\nEngineering properties:")
894
+ for prop, value in stats["engineering_properties"].items():
895
+ status = "✓" if value else "✗"
896
+ print(f" {status} {prop}: {value}")
897
+
898
+ if __name__ == "__main__":
899
+ import asyncio
900
+
901
+ try:
902
+ asyncio.run(main())
903
+ except KeyboardInterrupt:
904
+ print(f"\n\n{KNOWLEDGE_NODE} System shutdown complete.")