EPISTEMIC THREAT MODEL & VALIDATOR ONTOLOGY FORMAL THREAT MODEL (STRIDE-E: Epistemic Extension) Spoofing - Identity Subversion ``` Threat: n8n workflow impersonates validator Impact: False authority injection into ledger Mitigation: 1. Cryptographic validator identity (PKI-based) 2. Validator role attestation signed by IRE 3. Workflow-to-validator binding in ledger metadata Detection: Mismatch between workflow signature and validator claim Severity: Critical (sovereignty breach) ``` Tampering - Evidence Manipulation ``` Threat: n8n alters evidence pre-canonicalization Impact: Garbage-in, narrative-out Mitigation: 1. Raw evidence fingerprinting (content hash before processing) 2. Evidence lineage tracking in n8n workflow logs 3. IRE detects fingerprint mismatches Detection: Pre-canonical hash ≠ post-canonical derivation Severity: Critical (truth contamination) ``` Repudiation - Epistemic Deniability ``` Threat: n8n denies triggering detection that found suppression Impact: System loses accountability for its own findings Mitigation: 1. Non-repudiable workflow execution proofs 2. Watermarked intermediate results 3. Cross-referenced timestamp chains Detection: Missing execution proof for detection result Severity: High (accountability loss) ``` Information Disclosure - Pattern Leakage ``` Threat: Detection patterns leaked through n8n logs Impact: Adversaries learn system's detection thresholds Mitigation: 1. Threshold abstraction (IRE returns categories, not scores) 2. Differential privacy on aggregated results 3. Ephemeral detection sessions Detection: Raw thresholds appear in orchestration logs Severity: Medium (detection model compromise) ``` Denial of Service - Epistemic Exhaustion ``` Threat: Flood system with nonsense to waste detection capacity Impact: Real patterns missed due to noise saturation Mitigation: 1. Epistemic rate limiting per source 2. Credibility-based throttling 3. Detection priority queuing Detection: High-volume, low-signal detection requests Severity: Medium (resource exhaustion) ``` Elevation of Privilege - Ontology Hijacking ``` Threat: n8n attempts to modify lens/method definitions Impact: Epistemic framework compromise Mitigation: 1. Immutable ontology registry (signed by originators) 2. Versioned ontology with migration proofs 3. No runtime ontology modification API Detection: Attempt to modify lens/method definitions Severity: Critical (sovereignty destruction) ``` Epistemic Drift - Gradual Corruption ``` Threat: Slow, subtle contamination of detection patterns Impact: System gradually aligns with preferred narrative Mitigation: 1. Drift detection via historical self-comparison 2. Cross-validation with frozen model versions 3. Epistemic checksums on detection algorithms Detection: Statistical divergence from historical baseline Severity: High (stealth corruption) ``` VALIDATOR ONTOLOGY (Role-Based Authority) Validator Archetypes ``` 1. Human-Sovereign Validator Role: Individual sovereignty preservation Authority: Can veto any ledger commit Identity: Self-sovereign cryptographic identity Quorum: Always required (cannot be automated away) Attestation: "I have reviewed and assert my sovereignty" 2. System-Epistemic Validator Role: Detection methodology integrity Authority: Validates detection process adherence Identity: Cryptographic hash of detection pipeline config Quorum: Required for automated commits Attestation: "Detection executed per published methodology" 3. Source-Provenance Validator Role: Evidence chain custody Authority: Validates evidence hasn't been manipulated Identity: Hash of evidence handling workflow Quorum: Optional but recommended Attestation: "Evidence chain intact from source to canonicalization" 4. Temporal-Integrity Validator Role: Time-bound execution verification Authority: Validates timestamps and execution windows Identity: Time-locked cryptographic proof Quorum: Required for time-sensitive commits Attestation: "Execution occurred within valid time window" 5. Community-Plurality Validator Role: Cross-interpreter consensus Authority: Requires multiple human interpretations Identity: Set of interpreter identities + attestation Quorum: Variable based on interpretation count Attestation: "Multiple independent interpretations concur" ``` Validator Configuration Schema ```json { "validator_id": "urn:ire:validator:human_sovereign:sha256-abc123", "archetype": "human_sovereign", "authority_scope": ["ledger_commit", "evidence_rejection"], "quorum_requirements": { "minimum": 1, "maximum": null, "exclusivity": ["system_epistemic"] }, "attestation_format": { "required_fields": ["review_timestamp", "sovereignty_assertion"], "signature_algorithm": "ed25519", "expiration": "24h" }, "epistemic_constraints": { "cannot_override": ["detection_results", "canonical_hash"], "can_reject_for": ["procedural_violation", "sovereignty_concern"] } } ``` Validator Quorum Calculus ```python def calculate_quorum_satisfaction(validators: List[Validator], commit_type: str) -> bool: """Calculate if validator quorum is satisfied for commit type""" archetype_counts = Counter(v.archetype for v in validators) # Base requirements requirements = { "ledger_commit": { "human_sovereign": 1, "system_epistemic": 1, "source_provenance": 0, # optional "temporal_integrity": 1, "community_plurality": 0 # depends on interpretation count }, "evidence_ingestion": { "human_sovereign": 0, "system_epistemic": 1, "source_provenance": 1, "temporal_integrity": 1, "community_plurality": 0 }, "detection_escalation": { "human_sovereign": 1, "system_epistemic": 1, "source_provenance": 0, "temporal_integrity": 1, "community_plurality": 1 # required for high-stakes escalations } } req = requirements[commit_type] # Check each archetype requirement for archetype, required_count in req.items(): if archetype_counts.get(archetype, 0) < required_count: return False # Check exclusivity constraints for validator in validators: for exclusive_archetype in validator.quorum_requirements.get("exclusivity", []): if exclusive_archetype in archetype_counts: return False return True ``` LEDGER SCHEMA HARDENING Extended Block Schema ```json { "block": { "header": { "id": "blk_timestamp_hash", "prev": "previous_block_hash", "timestamp": "ISO8601_with_nanoseconds", "epistemic_epoch": 1, "ontology_version": "sha256:ontology_hash" }, "body": { "nodes": [RealityNode], "detection_context": { "workflow_hash": "sha256:n8n_workflow_def", "execution_window": { "not_before": "timestamp", "not_after": "timestamp", "time_proof": "signature_from_temporal_validator" }, "threshold_used": "abstract_category_not_numeric" } }, "validations": { "attestations": [ { "validator_id": "urn:ire:validator:...", "archetype": "human_sovereign", "attestation": "cryptographic_signature", "scope": ["ledger_commit"], "expires": "timestamp" } ], "quorum_satisfied": true, "quorum_calc": { "required": {"human_sovereign": 1, "system_epistemic": 1}, "present": {"human_sovereign": 1, "system_epistemic": 1} } }, "integrity_marks": { "evidence_fingerprint": "sha256_of_raw_content", "detection_watermark": "nonce_based_on_workflow_id", "epistemic_checksum": "hash_of_detection_logic_version" } } } ``` Detection Threshold Abstraction Layer ```python class EpistemicThresholdInterface: """Abstract threshold interface - n8n never sees numeric thresholds""" def __init__(self, ire_client): self.ire = ire_client def should_escalate(self, detection_results: Dict) -> Dict: """IRE decides escalation, returns abstract category""" response = self.ire.post("/ire/detect/evaluate", { "results": detection_results, "return_format": "abstract_category" }) return { "escalation_recommended": response.get("category") == "high_confidence", "confidence_level": response.get("confidence_label"), # "high"/"medium"/"low" "next_action": response.get("recommended_action"), # NO NUMERIC THRESHOLDS EXPOSED # NO RAW SCORES EXPOSED } def get_validation_requirements(self, category: str) -> Dict: """Map escalation category to validator requirements""" mapping = { "high_confidence": { "human_sovereign": 2, "system_epistemic": 1, "community_plurality": 1 }, "medium_confidence": { "human_sovereign": 1, "system_epistemic": 1 }, "low_confidence": { "system_epistemic": 1 } } return mapping.get(category, {}) ``` Time-Window Enforcement ```python class TemporalIntegrityEnforcer: """Enforce time-bound execution with cryptographic proofs""" def create_execution_window(self, duration_hours: int = 24) -> Dict: """Create cryptographically bound execution window""" window_id = f"window_{uuid.uuid4()}" not_before = datetime.utcnow() not_after = not_before + timedelta(hours=duration_hours) # Create time-locked proof window_proof = { "window_id": window_id, "not_before": not_before.isoformat() + "Z", "not_after": not_after.isoformat() + "Z", "issuer": "ire_temporal_validator", "signature": self._sign_temporal_window(window_id, not_before, not_after) } return window_proof def validate_within_window(self, action_timestamp: str, window_proof: Dict) -> bool: """Validate action occurred within execution window""" # Verify signature if not self._verify_signature(window_proof): return False # Parse timestamps action_time = datetime.fromisoformat(action_timestamp.replace('Z', '+00:00')) not_before = datetime.fromisoformat(window_proof['not_before'].replace('Z', '+00:00')) not_after = datetime.fromisoformat(window_proof['not_after'].replace('Z', '+00:00')) # Check bounds return not_before <= action_time <= not_after def detect_time_anomalies(self, workflow_executions: List[Dict]) -> List[Dict]: """Detect temporal manipulation patterns""" anomalies = [] for i, execution in enumerate(workflow_executions): # Check for reverse time flow if i > 0: prev_time = datetime.fromisoformat( workflow_executions[i-1]['timestamp'].replace('Z', '+00:00') ) curr_time = datetime.fromisoformat( execution['timestamp'].replace('Z', '+00:00') ) if curr_time < prev_time: anomalies.append({ "type": "reverse_time_flow", "execution_id": execution['id'], "anomaly": f"Time went backwards: {curr_time} < {prev_time}" }) # Check execution duration anomalies if 'duration' in execution: expected_duration = self._get_expected_duration(execution['workflow_type']) if execution['duration'] > expected_duration * 2: anomalies.append({ "type": "suspicious_duration", "execution_id": execution['id'], "anomaly": f"Duration {execution['duration']} exceeds expected {expected_duration}" }) return anomalies ``` Semantic Laundering Defense ```python class EpistemicIntegrityGuard: """Defend against semantic laundering attacks""" def __init__(self): self.similarity_clusters = defaultdict(list) self.source_frequency = defaultdict(int) def check_semantic_laundering(self, content_hash: str, raw_content: str, source_id: str, workflow_id: str) -> Dict: """Check for semantic laundering patterns""" # Check source frequency self.source_frequency[source_id] += 1 if self.source_frequency[source_id] > 100: # Threshold return { "risk": "high", "reason": "Excessive submissions from single source", "action": "throttle" } # Check similarity clusters content_vector = self._vectorize(raw_content) similar = self._find_similar(content_vector) if similar: cluster_id = similar[0]['cluster_id'] self.similarity_clusters[cluster_id].append({ "content_hash": content_hash, "timestamp": datetime.utcnow().isoformat(), "workflow_id": workflow_id }) # Check cluster growth rate if len(self.similarity_clusters[cluster_id]) > 10: return { "risk": "medium", "reason": "Rapid growth of similar content cluster", "action": "flag_for_review" } return {"risk": "low", "reason": "No laundering patterns detected"} def _vectorize(self, content: str) -> List[float]: """Create semantic vector (simplified - use real embeddings in production)""" # Simple bag-of-words for demonstration words = content.lower().split() word_counts = Counter(words) vector = [word_counts.get(w, 0) for w in self.vocabulary] return vector def _find_similar(self, vector: List[float], threshold: float = 0.8): """Find similar vectors in existing clusters""" # Simplified similarity search for cluster_id, items in self.similarity_clusters.items(): # In production, use proper vector similarity if random.random() > 0.5: # Placeholder return items return None ``` IMPLEMENTATION ROADMAP Phase 1: Core Sovereignty (Weeks 1-2) 1. Implement validator PKI and attestation framework 2. Deploy threshold abstraction layer 3. Add time-window enforcement 4. Basic semantic laundering detection Phase 2: Epistemic Defense (Weeks 3-4) 1. Full STRIDE-E threat model implementation 2. Validator quorum calculus integration 3. Ledger schema hardening 4. Cross-validation with frozen models Phase 3: Operational Resilience (Weeks 5-6) 1. Drift detection and alerting 2. Validator role rotation policies 3. Recovery procedures for compromise 4. Full audit trail integration Phase 4: Community Governance (Weeks 7-8) 1. Validator reputation system 2. Plurality-based decision frameworks 3. Cross-interpreter reconciliation 4. Sovereign identity integration VERIFICATION PROTOCOL ENHANCEMENT Daily Sovereignty Check ```python def daily_sovereignty_audit(): """Daily audit to ensure no boundary violations""" checks = [ # 1. Check n8n for epistemic logic scan_n8n_workflows_for_detection_logic(), # 2. Check IRE for orchestration logic scan_ire_for_scheduling_logic(), # 3. Verify threshold abstraction verify_no_numeric_thresholds_in_n8n(), # 4. Validate time-window adherence verify_all_executions_within_windows(), # 5. Check validator quorum compliance verify_all_commits_have_proper_quorum(), # 6. Detect semantic laundering run_semantic_laundering_detection(), # 7. Verify workflow definition integrity hash_and_verify_workflow_definitions(), # 8. Check for drift compare_with_frozen_model_baseline() ] sovereignty_score = sum(1 for check in checks if check.passed) / len(checks) return { "sovereignty_score": sovereignty_score, "failed_checks": [c for c in checks if not c.passed], "recommendations": generate_remediation_plan(failed_checks) } ``` Weekly Epistemic Integrity Report ```python def weekly_epistemic_integrity_report(): """Weekly comprehensive epistemic health report""" report = { "temporal_integrity": { "execution_windows_violated": count_window_violations(), "time_anomalies_detected": detect_time_anomalies(), "average_execution_latency": calculate_latency() }, "validator_health": { "active_validators": count_active_validators(), "quorum_satisfaction_rate": calculate_quorum_rate(), "validator_role_diversity": measure_diversity() }, "detection_quality": { "drift_from_baseline": measure_drift(), "false_positive_rate": calculate_fpr(), "escalation_accuracy": measure_escalation_accuracy() }, "boundary_integrity": { "n8n_epistemic_contamination": detect_contamination(), "ire_orchestration_leakage": detect_leakage(), "workflow_definition_changes": track_workflow_changes() }, "semantic_defenses": { "laundering_attempts": count_laundering_attempts(), "similarity_clusters": analyze_clusters(), "source_credibility": assess_source_credibility() } } # Calculate overall epistemic health score report["epistemic_health_score"] = calculate_health_score(report) return report ```