--- library_name: transformers language: - en base_model: - microsoft/deberta-v3-base pipeline_tag: text-classification --- ### Model Performance | Model | Epoch | Learning Rate | Grad Norm (Mean) | Training Loss | Validation Loss | Accuracy | F1 Score (Weighted) | F1 Score (Macro) | Precision (Weighted) | Precision (Macro) | Recall (Weighted) | Recall (Macro) | |------------------------------|-------|---------------|------------------|---------------|-----------------|-----------|---------------------|------------------|----------------------|-------------------|-------------------|----------------| | DeBERTaV3 (Text Only) | 10 | 0.0000050 | 3.755 | 0.102 | 0.309 | 0.913 | 0.914 | 0.858 | 0.918 | 0.855 | 0.913 | 0.868 | ### How to Use ```python from transformers import AutoTokenizer, AutoConfig, pipeline, \ DebertaV2ForSequenceClassification config = AutoConfig.from_pretrained('wanadzhar913/debertav3-finetuned-banking-transaction-classification-text-only') model = DebertaV2ForSequenceClassification.from_pretrained('wanadzhar913/debertav3-finetuned-banking-transaction-classification-text-only', config = config) tokenizer = AutoTokenizer.from_pretrained('wanadzhar913/debertav3-finetuned-banking-transaction-classification-text-only') pipe = pipeline( "text-classification", tokenizer = tokenizer, model=model, padding=True, device=0, ) pipe([ "Online Banking transfer from CHK 6479 Confirmation# 1425 ", "DEPOSIT", # Supposed to be 'Payroll' "SELF LENDER AUSTIN TX 23267 Debit Card Purchase 09/23 10:20a #6410", "SECU Foundation", "RECURRING PAYMENT AUTHORIZED ON 06/02 GEICO *AUTO 1036 DC S583153489705993 111", ]) >>>[{'label': 'Internal Account Transfer', 'score': 0.9998998641967773}, >>> {'label': 'Transfer Deposit', 'score': 0.35954612493515015}, >>> {'label': 'Uncategorized', 'score': 0.9998960494995117}, >>> {'label': 'Restaurants', 'score': 0.6260305047035217}, >>> {'label': 'Insurance', 'score': 0.9998502731323242}] ```