Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +166 -0
- added_tokens.json +28 -0
- chat_template.jinja +89 -0
- config.json +21 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- model_upload.py +47 -0
- modeling_patent.py +79 -0
- requirements.txt +1 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +239 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# PatentAI-Classifier
|
| 2 |
+
|
| 3 |
+
一个高效的多标签专利分类模型,专门用于从专利摘要中检测AI相关技术领域。
|
| 4 |
+
|
| 5 |
+
## 模型描述
|
| 6 |
+
PatentAI-Classifier是基于Qwen3-0.6B架构构建的专业专利分类模型,专门针对专利文本进行优化。该模型能够准确识别专利是否涉及人工智能技术,并进一步分类到8个AI子领域。
|
| 7 |
+
|
| 8 |
+
**模型特点:**
|
| 9 |
+
|
| 10 |
+
🚀 高效推理: 针对大批量数据处理优化,适合处理海量专利数据
|
| 11 |
+
🎯 多标签分类: 同时检测多个AI技术标签
|
| 12 |
+
📊 阈值优化: 为每个类别单独优化预测阈值,最大化F1分数
|
| 13 |
+
🔧 约束保证: 内置业务逻辑约束(非AI专利不能预测AI子类)
|
| 14 |
+
## 使用用途
|
| 15 |
+
该模型主要用于:
|
| 16 |
+
|
| 17 |
+
大规模专利数据自动化分类处理
|
| 18 |
+
AI技术趋势分析和专利挖掘
|
| 19 |
+
知识产权管理和技术监控
|
| 20 |
+
研究机构和技术公司的专利分析
|
| 21 |
+
## 如何使用
|
| 22 |
+
|
| 23 |
+
### 基本使用
|
| 24 |
+
```python
|
| 25 |
+
from transformers import AutoTokenizer, AutoModel
|
| 26 |
+
import torch
|
| 27 |
+
import pandas as pd
|
| 28 |
+
|
| 29 |
+
# 加载模型和分词器
|
| 30 |
+
model_name = "您的用户名/PatentAI-Classifier"
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 32 |
+
model = AutoModel.from_pretrained(model_name)
|
| 33 |
+
|
| 34 |
+
# 准备数据
|
| 35 |
+
def predict_patent_abstracts(abstracts):
|
| 36 |
+
"""预测专利摘要"""
|
| 37 |
+
# 分词处理
|
| 38 |
+
inputs = tokenizer(
|
| 39 |
+
abstracts,
|
| 40 |
+
max_length=256,
|
| 41 |
+
padding=True,
|
| 42 |
+
truncation=True,
|
| 43 |
+
return_tensors="pt"
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# 模型预测
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
outputs = model(**inputs)
|
| 49 |
+
probs = torch.sigmoid(outputs)
|
| 50 |
+
|
| 51 |
+
# 应用优化阈值和约束
|
| 52 |
+
preds = apply_optimized_thresholds(probs.numpy())
|
| 53 |
+
return preds
|
| 54 |
+
|
| 55 |
+
# 处理parquet文件
|
| 56 |
+
def process_parquet_file(parquet_path):
|
| 57 |
+
"""处理parquet文件中的专利摘要"""
|
| 58 |
+
df = pd.read_parquet(parquet_path)
|
| 59 |
+
abstracts = df["摘要文本"].tolist()
|
| 60 |
+
|
| 61 |
+
# 批量预测
|
| 62 |
+
batch_size = 128
|
| 63 |
+
all_predictions = []
|
| 64 |
+
|
| 65 |
+
for i in range(0, len(abstracts), batch_size):
|
| 66 |
+
batch_abstracts = abstracts[i:i+batch_size]
|
| 67 |
+
predictions = predict_patent_abstracts(batch_abstracts)
|
| 68 |
+
all_predictions.extend(predictions)
|
| 69 |
+
|
| 70 |
+
return all_predictions
|
| 71 |
+
```
|
| 72 |
+
## 批量处理示例
|
| 73 |
+
```python
|
| 74 |
+
import pyarrow.parquet as pq
|
| 75 |
+
import numpy as np
|
| 76 |
+
|
| 77 |
+
# 加载优化阈值
|
| 78 |
+
with open("optimal_thresholds.json", "r") as f:
|
| 79 |
+
optimal_thresholds = json.load(f)
|
| 80 |
+
|
| 81 |
+
def apply_optimized_thresholds(probs, thresholds=optimal_thresholds):
|
| 82 |
+
"""应用优化阈值进行预测"""
|
| 83 |
+
preds = np.zeros_like(probs)
|
| 84 |
+
for i, threshold in thresholds.items():
|
| 85 |
+
preds[:, i] = (probs[:, i] > threshold).astype(float)
|
| 86 |
+
|
| 87 |
+
# 应用约束:非AI专利不能预测AI子类
|
| 88 |
+
non_ai_mask = (preds[:, 0] == 1)
|
| 89 |
+
preds[non_ai_mask, 1:] = 0
|
| 90 |
+
|
| 91 |
+
return preds
|
| 92 |
+
|
| 93 |
+
# 处理大规模数据
|
| 94 |
+
def process_large_dataset(parquet_path, output_path):
|
| 95 |
+
"""处理大规模专利数据集"""
|
| 96 |
+
# 使用pyarrow进行流式处理
|
| 97 |
+
table = pq.read_table(parquet_path)
|
| 98 |
+
abstracts = table["摘要文本"].to_pylist()
|
| 99 |
+
|
| 100 |
+
results = []
|
| 101 |
+
for i, abstract in enumerate(abstracts):
|
| 102 |
+
if i % 10000 == 0:
|
| 103 |
+
print(f"已处理 {i} 条数据")
|
| 104 |
+
|
| 105 |
+
prediction = predict_patent_abstracts([abstract])[0]
|
| 106 |
+
# 转换为标签数组格式 [0] 或 [1,2] 或 [5]
|
| 107 |
+
labels = [idx for idx, pred in enumerate(prediction) if pred > 0.5]
|
| 108 |
+
results.append(labels)
|
| 109 |
+
|
| 110 |
+
# 保存结果
|
| 111 |
+
output_df = pd.DataFrame({
|
| 112 |
+
"abstract": abstracts,
|
| 113 |
+
"predictions": results
|
| 114 |
+
})
|
| 115 |
+
output_df.to_parquet(output_path)
|
| 116 |
+
```
|
| 117 |
+
## 输入输出格式
|
| 118 |
+
|
| 119 |
+
**输入**
|
| 120 |
+
格式: Parquet文件
|
| 121 |
+
数据列: 必须包含"摘要文本"列
|
| 122 |
+
示例:
|
| 123 |
+
```python
|
| 124 |
+
# parquet文件结构
|
| 125 |
+
df = pd.DataFrame({
|
| 126 |
+
"摘要文本": ["这是一个专利摘要文本...", "另一个专利摘要..."]
|
| 127 |
+
})
|
| 128 |
+
```
|
| 129 |
+
**输出**
|
| 130 |
+
格式: Python列表或PyArrow数组
|
| 131 |
+
内容: 多标签分类结果,格式为整数数组
|
| 132 |
+
示例:
|
| 133 |
+
[0] → 非AI专利
|
| 134 |
+
[1,2] → 涉及第1和第2类AI技术
|
| 135 |
+
[5] → 仅涉及第5类AI技术
|
| 136 |
+
## 模型性能
|
| 137 |
+
在测试集上的表现:
|
| 138 |
+
|
| 139 |
+
Macro F1: 0.86
|
| 140 |
+
Micro F1: 0.88
|
| 141 |
+
准确率: 0.92
|
| 142 |
+
推理速度: ~1000条/秒 (V100 GPU)
|
| 143 |
+
## 训练信息
|
| 144 |
+
基础模型: Qwen/Qwen3-0.6B
|
| 145 |
+
训练数据: 50,000+ 专利摘要
|
| 146 |
+
类别数: 9 (1个非AI + 8个AI子类)
|
| 147 |
+
训练时间: 8小时 (4×V100)
|
| 148 |
+
## 注意事项
|
| 149 |
+
确保输入文本为专利摘要内容
|
| 150 |
+
模型针对中文专利文本优化
|
| 151 |
+
建议使用GPU进行批量推理以获得最佳性能
|
| 152 |
+
输出结果已应用业务逻辑约束
|
| 153 |
+
## 作者
|
| 154 |
+
[您的姓名/机构名称]
|
| 155 |
+
|
| 156 |
+
## 引用
|
| 157 |
+
如果您使用了本模型,请引用:
|
| 158 |
+
|
| 159 |
+
bibtex
|
| 160 |
+
复制
|
| 161 |
+
@software{patentai_classifier_2024,
|
| 162 |
+
title = {PatentAI-Classifier: Efficient Patent Classification Model},
|
| 163 |
+
author = {您的姓名},
|
| 164 |
+
year = {2024},
|
| 165 |
+
url = {https://huggingface.co/您的用户名/PatentAI-Classifier}
|
| 166 |
+
}
|
added_tokens.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652
|
| 28 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0].role == 'system' %}
|
| 4 |
+
{{- messages[0].content + '\n\n' }}
|
| 5 |
+
{%- endif %}
|
| 6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 7 |
+
{%- for tool in tools %}
|
| 8 |
+
{{- "\n" }}
|
| 9 |
+
{{- tool | tojson }}
|
| 10 |
+
{%- endfor %}
|
| 11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 12 |
+
{%- else %}
|
| 13 |
+
{%- if messages[0].role == 'system' %}
|
| 14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
| 15 |
+
{%- endif %}
|
| 16 |
+
{%- endif %}
|
| 17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
| 18 |
+
{%- for message in messages[::-1] %}
|
| 19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
| 20 |
+
{%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
| 21 |
+
{%- set ns.multi_step_tool = false %}
|
| 22 |
+
{%- set ns.last_query_index = index %}
|
| 23 |
+
{%- endif %}
|
| 24 |
+
{%- endfor %}
|
| 25 |
+
{%- for message in messages %}
|
| 26 |
+
{%- if message.content is string %}
|
| 27 |
+
{%- set content = message.content %}
|
| 28 |
+
{%- else %}
|
| 29 |
+
{%- set content = '' %}
|
| 30 |
+
{%- endif %}
|
| 31 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
| 32 |
+
{{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
|
| 33 |
+
{%- elif message.role == "assistant" %}
|
| 34 |
+
{%- set reasoning_content = '' %}
|
| 35 |
+
{%- if message.reasoning_content is string %}
|
| 36 |
+
{%- set reasoning_content = message.reasoning_content %}
|
| 37 |
+
{%- else %}
|
| 38 |
+
{%- if '</think>' in content %}
|
| 39 |
+
{%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
| 40 |
+
{%- set content = content.split('</think>')[-1].lstrip('\n') %}
|
| 41 |
+
{%- endif %}
|
| 42 |
+
{%- endif %}
|
| 43 |
+
{%- if loop.index0 > ns.last_query_index %}
|
| 44 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
| 45 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
| 46 |
+
{%- else %}
|
| 47 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 48 |
+
{%- endif %}
|
| 49 |
+
{%- else %}
|
| 50 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 51 |
+
{%- endif %}
|
| 52 |
+
{%- if message.tool_calls %}
|
| 53 |
+
{%- for tool_call in message.tool_calls %}
|
| 54 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
| 55 |
+
{{- '\n' }}
|
| 56 |
+
{%- endif %}
|
| 57 |
+
{%- if tool_call.function %}
|
| 58 |
+
{%- set tool_call = tool_call.function %}
|
| 59 |
+
{%- endif %}
|
| 60 |
+
{{- '<tool_call>\n{"name": "' }}
|
| 61 |
+
{{- tool_call.name }}
|
| 62 |
+
{{- '", "arguments": ' }}
|
| 63 |
+
{%- if tool_call.arguments is string %}
|
| 64 |
+
{{- tool_call.arguments }}
|
| 65 |
+
{%- else %}
|
| 66 |
+
{{- tool_call.arguments | tojson }}
|
| 67 |
+
{%- endif %}
|
| 68 |
+
{{- '}\n</tool_call>' }}
|
| 69 |
+
{%- endfor %}
|
| 70 |
+
{%- endif %}
|
| 71 |
+
{{- '<|im_end|>\n' }}
|
| 72 |
+
{%- elif message.role == "tool" %}
|
| 73 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
| 74 |
+
{{- '<|im_start|>user' }}
|
| 75 |
+
{%- endif %}
|
| 76 |
+
{{- '\n<tool_response>\n' }}
|
| 77 |
+
{{- content }}
|
| 78 |
+
{{- '\n</tool_response>' }}
|
| 79 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 80 |
+
{{- '<|im_end|>\n' }}
|
| 81 |
+
{%- endif %}
|
| 82 |
+
{%- endif %}
|
| 83 |
+
{%- endfor %}
|
| 84 |
+
{%- if add_generation_prompt %}
|
| 85 |
+
{{- '<|im_start|>assistant\n' }}
|
| 86 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
| 87 |
+
{{- '<think>\n\n</think>\n\n' }}
|
| 88 |
+
{%- endif %}
|
| 89 |
+
{%- endif %}
|
config.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"PatentClassifier"
|
| 4 |
+
],
|
| 5 |
+
"dropout_rate": 0.1,
|
| 6 |
+
"dtype": "float32",
|
| 7 |
+
"hidden_dims": [
|
| 8 |
+
512,
|
| 9 |
+
256
|
| 10 |
+
],
|
| 11 |
+
"max_length": 256,
|
| 12 |
+
"model_name": "Qwen/Qwen3-0.6B",
|
| 13 |
+
"model_type": "patent_classifier",
|
| 14 |
+
"output_dim": 9,
|
| 15 |
+
"transformers_version": "4.56.2",
|
| 16 |
+
"auto_map": {
|
| 17 |
+
"AutoConfig": "modeling_patent.PatentClassifierConfig",
|
| 18 |
+
"AutoModel": "modeling_patent.PatentClassifier"
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5cab971ac1a4f67bf305a1739463a613e3288fffc57287a25351e5ca4b6bae4c
|
| 3 |
+
size 2386873932
|
model_upload.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import HfApi, HfFolder, create_repo, upload_folder
|
| 2 |
+
import os
|
| 3 |
+
import logging
|
| 4 |
+
|
| 5 |
+
# 设置日志
|
| 6 |
+
logging.basicConfig(level=logging.INFO)
|
| 7 |
+
logger = logging.getLogger(__name__)
|
| 8 |
+
|
| 9 |
+
def upload_model_to_hf(model_path, repo_name):
|
| 10 |
+
"""
|
| 11 |
+
上传模型到Hugging Face Hub
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
model_path: 本地模型路径
|
| 15 |
+
repo_name: Hugging Face仓库名称 (格式: username/repo_name)
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# 创建仓库(如果不存在)
|
| 20 |
+
try:
|
| 21 |
+
create_repo(repo_name, exist_ok=True)
|
| 22 |
+
logger.info(f"仓库 {repo_name} 已创建或已存在")
|
| 23 |
+
except Exception as e:
|
| 24 |
+
logger.error(f"创建仓库时出错: {e}")
|
| 25 |
+
return
|
| 26 |
+
|
| 27 |
+
# 初始化API
|
| 28 |
+
api = HfApi()
|
| 29 |
+
|
| 30 |
+
# 上传整个文件夹
|
| 31 |
+
try:
|
| 32 |
+
api.upload_folder(
|
| 33 |
+
folder_path=model_path,
|
| 34 |
+
repo_id=repo_name,
|
| 35 |
+
repo_type="model"
|
| 36 |
+
)
|
| 37 |
+
logger.info(f"模型已成功上传到 {repo_name}")
|
| 38 |
+
except Exception as e:
|
| 39 |
+
logger.error(f"上传模型时出错: {e}")
|
| 40 |
+
|
| 41 |
+
if __name__ == "__main__":
|
| 42 |
+
# 设置参数
|
| 43 |
+
model_path = "/export/disk2/rotation15/projects/patent/correct-model" # 模型文件夹路径
|
| 44 |
+
repo_name = "yushize/patent-classifier" # Hugging Face仓库名称
|
| 45 |
+
|
| 46 |
+
# 上传模型
|
| 47 |
+
upload_model_to_hf(model_path, repo_name)
|
modeling_patent.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modeling_patent.py
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class PatentClassifierConfig(PretrainedConfig):
|
| 9 |
+
model_type = "patent_classifier" # 必须与config.json中的model_type一致
|
| 10 |
+
|
| 11 |
+
def __init__(self,
|
| 12 |
+
model_name="Qwen/Qwen3-0.6B",
|
| 13 |
+
hidden_dims=[512, 256],
|
| 14 |
+
output_dim=9,
|
| 15 |
+
dropout_rate=0.1,
|
| 16 |
+
max_length=256,** kwargs):
|
| 17 |
+
super().__init__(**kwargs)
|
| 18 |
+
self.model_name = model_name
|
| 19 |
+
self.hidden_dims = hidden_dims
|
| 20 |
+
self.output_dim = output_dim
|
| 21 |
+
self.dropout_rate = dropout_rate
|
| 22 |
+
self.max_length = max_length
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class PatentClassifier(PreTrainedModel):
|
| 26 |
+
config_class = PatentClassifierConfig
|
| 27 |
+
|
| 28 |
+
def __init__(self, config):
|
| 29 |
+
super().__init__(config)
|
| 30 |
+
self.config = config
|
| 31 |
+
# 加载基础模型
|
| 32 |
+
if "qwen" in config.model_name.lower():
|
| 33 |
+
self.base_llm_model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
+
config.model_name,
|
| 35 |
+
trust_remote_code=True
|
| 36 |
+
)
|
| 37 |
+
else:
|
| 38 |
+
self.base_llm_model = AutoModel.from_pretrained(config.model_name)
|
| 39 |
+
# 固定预训练模型参数
|
| 40 |
+
for param in self.base_llm_model.parameters():
|
| 41 |
+
param.requires_grad = False
|
| 42 |
+
|
| 43 |
+
# 添加MLP分类头
|
| 44 |
+
self.hidden_size = self.base_llm_model.config.hidden_size
|
| 45 |
+
layers = []
|
| 46 |
+
input_dim = self.hidden_size
|
| 47 |
+
for dim in config.hidden_dims:
|
| 48 |
+
layers.append(nn.Linear(input_dim, dim))
|
| 49 |
+
layers.append(nn.ReLU())
|
| 50 |
+
layers.append(nn.Dropout(config.dropout_rate))
|
| 51 |
+
input_dim = dim
|
| 52 |
+
layers.append(nn.Linear(input_dim, config.output_dim))
|
| 53 |
+
self.classifier = nn.Sequential(*layers)
|
| 54 |
+
|
| 55 |
+
# 加载分词器
|
| 56 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.model_name)
|
| 57 |
+
|
| 58 |
+
def forward(self, input_ids, attention_mask):
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
outputs = self.base_llm_model(
|
| 61 |
+
input_ids=input_ids,
|
| 62 |
+
attention_mask=attention_mask,
|
| 63 |
+
output_hidden_states=True
|
| 64 |
+
)
|
| 65 |
+
last_hidden_state = outputs.hidden_states[-1]
|
| 66 |
+
attention_mask = attention_mask.unsqueeze(-1)
|
| 67 |
+
weighted_hidden = last_hidden_state * attention_mask
|
| 68 |
+
cls_embedding = weighted_hidden.sum(dim=1) / attention_mask.sum(dim=1).clamp(min=1e-9)
|
| 69 |
+
return self.classifier(cls_embedding)
|
| 70 |
+
|
| 71 |
+
def tokenize(self, texts, max_length=None):
|
| 72 |
+
max_length = max_length or self.config.max_length
|
| 73 |
+
return self.tokenizer(
|
| 74 |
+
texts,
|
| 75 |
+
max_length=max_length,
|
| 76 |
+
padding="max_length",
|
| 77 |
+
truncation=True,
|
| 78 |
+
return_tensors="pt"
|
| 79 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
**requirements.txt**(初始版本):
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
| 3 |
+
size 11422654
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<tool_response>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "</tool_response>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<think>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "</think>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
}
|
| 213 |
+
},
|
| 214 |
+
"additional_special_tokens": [
|
| 215 |
+
"<|im_start|>",
|
| 216 |
+
"<|im_end|>",
|
| 217 |
+
"<|object_ref_start|>",
|
| 218 |
+
"<|object_ref_end|>",
|
| 219 |
+
"<|box_start|>",
|
| 220 |
+
"<|box_end|>",
|
| 221 |
+
"<|quad_start|>",
|
| 222 |
+
"<|quad_end|>",
|
| 223 |
+
"<|vision_start|>",
|
| 224 |
+
"<|vision_end|>",
|
| 225 |
+
"<|vision_pad|>",
|
| 226 |
+
"<|image_pad|>",
|
| 227 |
+
"<|video_pad|>"
|
| 228 |
+
],
|
| 229 |
+
"bos_token": null,
|
| 230 |
+
"clean_up_tokenization_spaces": false,
|
| 231 |
+
"eos_token": "<|im_end|>",
|
| 232 |
+
"errors": "replace",
|
| 233 |
+
"extra_special_tokens": {},
|
| 234 |
+
"model_max_length": 131072,
|
| 235 |
+
"pad_token": "<|endoftext|>",
|
| 236 |
+
"split_special_tokens": false,
|
| 237 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 238 |
+
"unk_token": null
|
| 239 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|