SFT_General_Domain
This model is a fine-tuned version of Qwen/Qwen3-4B on the HTX_RAG_General_train dataset. It achieves the following results on the evaluation set:
- Loss: 0.9163
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.6974 | 0.4570 | 250 | 0.7169 |
| 0.6683 | 0.9141 | 500 | 0.6801 |
| 0.5631 | 1.3711 | 750 | 0.6760 |
| 0.5473 | 1.8282 | 1000 | 0.6649 |
| 0.372 | 2.2852 | 1250 | 0.7165 |
| 0.3771 | 2.7422 | 1500 | 0.7131 |
| 0.2403 | 3.1993 | 1750 | 0.8032 |
| 0.2243 | 3.6563 | 2000 | 0.8147 |
| 0.1584 | 4.1133 | 2250 | 0.9107 |
| 0.1448 | 4.5704 | 2500 | 0.9161 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 35