YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Qwen3 6.4M Model with Falcon-H1-0.5B-Instruct Tokenizer
Model Description
This is a 6.4M parameter Qwen3 model architecture combined with the Falcon-H1-0.5B-Instruct tokenizer (32K vocabulary).
- Architecture: Qwen3 (Grouped Query Attention, RMS Normalization, Q/K Normalization, RoPE)
- Tokenizer: Falcon-H1-0.5B-Instruct (32K vocab)
- Parameters: 6,393,440
- Precision: BF16
- Format: SafeTensors
- Vocabulary Size: 32768
- Use Case: Lightweight model with hybrid sliding window
Configuration
- vocab_size: 32768
- hidden_size: 96
- num_attention_heads: 8
- num_key_value_heads: 4
- num_hidden_layers: 8
- intermediate_size: 384
- head_dim: 128
- max_position_embeddings: 8192
Special Tokens
- BOS: <|begin_of_text|> (id: 17)
- EOS: <|end_of_text|> (id: 11)
- PAD: <|pad|> (id: 32767)
Usage
from transformers import Qwen3ForCausalLM, AutoTokenizer
model = Qwen3ForCausalLM.from_pretrained("./workspace/6.4m-falcon-tokenizer")
tokenizer = AutoTokenizer.from_pretrained("./workspace/6.4m-falcon-tokenizer")
# Generate text
inputs = tokenizer("Hello, world!", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# Batch processing (start small)
texts = ["Hello", "How are you", "Good morning"]
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=20)
Important Notes
- Model uses Qwen3 architecture with Falcon tokenizer (32K vocabulary)
- All token IDs must be < 32768 to avoid CUDA errors
- Start with small batch sizes (1-4) and gradually increase
- Use proper padding to prevent dimension mismatches
- Model initialized with random weights - requires fine-tuning
- Compatible with Qwen3 APIs but uses Falcon vocabulary
- Downloads last month
- 32
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support