SDNQ
Collection
Models quantized with SDNQ
•
20 items
•
Updated
•
8
4 bit (UINT4 with SVD rank 32) quantization of black-forest-labs/FLUX.1-dev using SDNQ.
Usage:
pip install sdnq
import torch
import diffusers
from sdnq import SDNQConfig # import sdnq to register it into diffusers and transformers
from sdnq.common import use_torch_compile as triton_is_available
from sdnq.loader import apply_sdnq_options_to_model
pipe = diffusers.FluxPipeline.from_pretrained("Disty0/FLUX.1-dev-SDNQ-uint4-svd-r32", torch_dtype=torch.bfloat16)
# Enable INT8 MatMul for AMD, Intel ARC and Nvidia GPUs:
if triton_is_available and (torch.cuda.is_available() or torch.xpu.is_available()):
pipe.transformer = apply_sdnq_options_to_model(pipe.transformer, use_quantized_matmul=True)
pipe.text_encoder_2 = apply_sdnq_options_to_model(pipe.text_encoder_2, use_quantized_matmul=True)
pipe.transformer = torch.compile(pipe.transformer) # optional for faster speeds
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt,
height=1024,
width=1024,
guidance_scale=3.5,
num_inference_steps=50,
max_sequence_length=512,
generator=torch.manual_seed(0)
).images[0]
image.save("flux-dev-sdnq-uint4-svd-r32.png")
Original BF16 vs SDNQ quantization comparison:
Base model
black-forest-labs/FLUX.1-dev