SetFit with TurkuNLP/bert-base-finnish-cased-v1

This is a SetFit model that can be used for Text Classification. This SetFit model uses TurkuNLP/bert-base-finnish-cased-v1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'Etunimi Sukunimi herra senkun aloittaa keräyksen♥️'
  • 'Etunimi Sukunimi venäjän syy hintojen nousu vai syytätkö sodastakin Suomen hallitusta ? 😖'
  • 'Etunimi Sukunimi onneks sentään ryyppäämään pääsee, eikä tule siihen ikäviä taukoja'
1
  • 'Etunimi Sukunimi Olikhaan se virve'
  • 'EU-maan ja länteen kallellaan olevan Suomen kimppuun käyminen olisi poliittisesti liian riskaapeliä jopa Putinille, kun Venäjällä on sisäisiäkin ongelmia ihan riittävästi. Täällä on tehty selväksi ettei mikään venäläisten "sotilaallinen apu" ole tervetullutta, eikä Suomen poliittinen tilanne uhkaa Venäjää millään lailla. Valko-Venäjä (eli Lukashenka) on jonkin sortin valtioliitossa Venäjän kanssa ja Ukraina ei kuulu mihinkään valtioliittoon. Ne ovat olleet siis ns. vapaata riistaa Venäjälle.'
  • 'Etunimi Sukunimi Ei tarkoita vaihtoehdottomuutta. Vaan että jos hakee, niin kannattaa valmistautua kaikenlaiseen, "roskinpia" rajaloukkauksia myöten. Valmistautuminen ei tarkoita, etteikö silti voisi hakea, vaan sitä että voi taklata vaikutusyritykset mahdollisimman hyvin.'

Evaluation

Metrics

Label Metric
all 0.6847

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Finnish-actions/SetFit-FinBERT1-A1-statement")
# Run inference
preds = model("Etunimi Sukunimi 🙋‍♀️")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 20.3115 213
Label Training Sample Count
0 328
1 635

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 6
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • evaluation_strategy: epoch
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0014 1 0.2398 -
0.0692 50 0.2668 -
0.1383 100 0.2413 -
0.2075 150 0.2369 -
0.2766 200 0.2194 -
0.3458 250 0.1942 -
0.4149 300 0.136 -
0.4841 350 0.106 -
0.5533 400 0.0627 -
0.6224 450 0.0337 -
0.6916 500 0.0173 -
0.7607 550 0.0137 -
0.8299 600 0.0073 -
0.8990 650 0.0041 -
0.9682 700 0.0029 -
1.0 723 - 0.3019
1.0373 750 0.0063 -
1.1065 800 0.0036 -
1.1757 850 0.0016 -
1.2448 900 0.0037 -
1.3140 950 0.0056 -
1.3831 1000 0.0036 -
1.4523 1050 0.0015 -
1.5214 1100 0.0003 -
1.5906 1150 0.0013 -
1.6598 1200 0.0025 -
1.7289 1250 0.0042 -
1.7981 1300 0.0024 -
1.8672 1350 0.0023 -
1.9364 1400 0.0003 -
2.0 1446 - 0.3401
2.0055 1450 0.0002 -
2.0747 1500 0.0013 -
2.1438 1550 0.0033 -
2.2130 1600 0.0013 -
2.2822 1650 0.0022 -
2.3513 1700 0.0034 -
2.4205 1750 0.0029 -
2.4896 1800 0.0031 -
2.5588 1850 0.0014 -
2.6279 1900 0.0003 -
2.6971 1950 0.0032 -
2.7663 2000 0.0022 -
2.8354 2050 0.0022 -
2.9046 2100 0.0012 -
2.9737 2150 0.0002 -
3.0 2169 - 0.3286
3.0429 2200 0.0002 -
3.1120 2250 0.0032 -
3.1812 2300 0.0003 -
3.2503 2350 0.0002 -
3.3195 2400 0.0011 -
3.3887 2450 0.0012 -
3.4578 2500 0.0001 -
3.5270 2550 0.002 -
3.5961 2600 0.0042 -
3.6653 2650 0.0028 -
3.7344 2700 0.0021 -
3.8036 2750 0.0027 -
3.8728 2800 0.0025 -
3.9419 2850 0.0029 -
4.0 2892 - 0.3328

Framework Versions

  • Python: 3.11.9
  • SetFit: 1.1.3
  • Sentence Transformers: 3.2.0
  • Transformers: 4.44.0
  • PyTorch: 2.4.0+cu124
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
22
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Finnish-actions/SetFit-FinBERT1-A1-statement

Finetuned
(34)
this model

Evaluation results