SetFit with TurkuNLP/bert-base-finnish-cased-v1

This is a SetFit model that can be used for Text Classification. This SetFit model uses TurkuNLP/bert-base-finnish-cased-v1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'Etunimi Sukunimi katso tilastot ja vertaa funssiin'
  • 'Ei muuta kuin Norjaan öljyostoksille 🙂'
  • 'Etunimi Etunimi Härmä ja mitenköhän se yle ne anonyymit sinne haastatteluun saa jos he eivät itse ilmottaudu. Kun ovat noi potilastiedot salaisia.... joskus olis ihan hyvä hetki miettiä....🤔🤔'
1
  • 'Etunimi väittäisin, että paremmin he tämän hoitavat, kuin viimekertainen "poikalauma"'
  • 'Eikö. Lisää piikkejä vaan niin hyvää tulee. Ne pelastaa. 😆'
  • 'Etunimi Sukunimi perustuslakia ei ole rikottu niissä asioissa mitä convoypellet väitti, kaikki mitä kaverit väittää ei ole totta .'

Evaluation

Metrics

Label Metric
all 0.7911

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Finnish-actions/SetFit-FinBERT1-A3-challenge")
# Run inference
preds = model("www.maskikauppa.fi")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 20.2233 213
Label Training Sample Count
0 843
1 120

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 6
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • evaluation_strategy: epoch
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0014 1 0.2409 -
0.0692 50 0.2872 -
0.1383 100 0.2515 -
0.2075 150 0.2327 -
0.2766 200 0.1678 -
0.3458 250 0.0977 -
0.4149 300 0.0434 -
0.4841 350 0.031 -
0.5533 400 0.0183 -
0.6224 450 0.0084 -
0.6916 500 0.0069 -
0.7607 550 0.0057 -
0.8299 600 0.0045 -
0.8990 650 0.0011 -
0.9682 700 0.0005 -
1.0 723 - 0.4558
1.0373 750 0.0003 -
1.1065 800 0.0008 -
1.1757 850 0.0007 -
1.2448 900 0.0001 -
1.3140 950 0.0001 -
1.3831 1000 0.0008 -
1.4523 1050 0.0001 -
1.5214 1100 0.0001 -
1.5906 1150 0.0001 -
1.6598 1200 0.0001 -
1.7289 1250 0.0001 -
1.7981 1300 0.0001 -
1.8672 1350 0.0001 -
1.9364 1400 0.0001 -
2.0 1446 - 0.4562
2.0055 1450 0.0 -
2.0747 1500 0.0001 -
2.1438 1550 0.0001 -
2.2130 1600 0.0 -
2.2822 1650 0.0001 -
2.3513 1700 0.0 -
2.4205 1750 0.0 -
2.4896 1800 0.0 -
2.5588 1850 0.0 -
2.6279 1900 0.0 -
2.6971 1950 0.0 -
2.7663 2000 0.0 -
2.8354 2050 0.0 -
2.9046 2100 0.0 -
2.9737 2150 0.0 -
3.0 2169 - 0.4560
3.0429 2200 0.0 -
3.1120 2250 0.0 -
3.1812 2300 0.0 -
3.2503 2350 0.0 -
3.3195 2400 0.0 -
3.3887 2450 0.0 -
3.4578 2500 0.0 -
3.5270 2550 0.0 -
3.5961 2600 0.0 -
3.6653 2650 0.0 -
3.7344 2700 0.0 -
3.8036 2750 0.0 -
3.8728 2800 0.0 -
3.9419 2850 0.0 -
4.0 2892 - 0.4593

Framework Versions

  • Python: 3.11.9
  • SetFit: 1.1.3
  • Sentence Transformers: 3.2.0
  • Transformers: 4.44.0
  • PyTorch: 2.4.0+cu124
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
20
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Finnish-actions/SetFit-FinBERT1-A3-challenge

Finetuned
(34)
this model

Evaluation results