metadata
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:CosineSimilarityLoss
widget:
- source_sentence: A boy wearing climbing gear climbs by a wooden pole.
sentences:
- A person wearing climbing gear climbs by a wooden pole.
- A man holds up a tent pole.
- A man plays an instrument.
- source_sentence: Asian men saying hello to each other.
sentences:
- Asian men are about to attend a convention.
- One man is working on a wrist watch to repair it.
- A white male dog is following a black female dog because she is in heat.
- source_sentence: >-
A woman in a white shirt and red jeans is carrying a plastic bag and
cellphone while walking along the street by art prints.
sentences:
- The people are sitting on a couch
- The man is walking down the street with a plastic bag.
- A man wants to join in the conversation
- source_sentence: Girl in a thin rowboat leaving the dock of a lake.
sentences:
- >-
A man in a solid white shirt and two black-haired boys pose for pictures
inside.
- The ladies are having a conversation.
- The girl is sitting on the shore of the lake.
- source_sentence: A large crowd watches as a couple tap dances together on a wooden floor.
sentences:
- People are leaving the restaurant.
- A man crashes his car into the grocery store.
- A man swings a golf club.
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: snli dev
type: snli-dev
metrics:
- type: pearson_cosine
value: 0.5007411996817115
name: Pearson Cosine
- type: spearman_cosine
value: 0.49310662404125943
name: Spearman Cosine
- type: pearson_manhattan
value: 0.4737846265333258
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.4923216703895389
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.47496147875492195
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.4931066240443629
name: Spearman Euclidean
- type: pearson_dot
value: 0.500741200773276
name: Pearson Dot
- type: spearman_dot
value: 0.49310655847757945
name: Spearman Dot
- type: pearson_max
value: 0.500741200773276
name: Pearson Max
- type: spearman_max
value: 0.4931066240443629
name: Spearman Max
SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nessrine9/finetuned2-MiniLM-L12-v2")
# Run inference
sentences = [
'A large crowd watches as a couple tap dances together on a wooden floor.',
'A man swings a golf club.',
'A man crashes his car into the grocery store.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
snli-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.5007 |
| spearman_cosine | 0.4931 |
| pearson_manhattan | 0.4738 |
| spearman_manhattan | 0.4923 |
| pearson_euclidean | 0.475 |
| spearman_euclidean | 0.4931 |
| pearson_dot | 0.5007 |
| spearman_dot | 0.4931 |
| pearson_max | 0.5007 |
| spearman_max | 0.4931 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 100,000 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 7 tokens
- mean: 16.85 tokens
- max: 67 tokens
- min: 5 tokens
- mean: 10.61 tokens
- max: 29 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label A biker is practicing a trick while his friend watch him as his audience.man riding the bike to show his talent to his girlfriend.0.5A man in a brown jacket standing in front of an open porch door.A man is standing in front of the porch door.0.0Two men and three children are at the beach.Five people enjoying their vacation.0.5 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 4fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss | snli-dev_spearman_max |
|---|---|---|---|
| 0.08 | 500 | 0.1807 | 0.3001 |
| 0.16 | 1000 | 0.1497 | 0.3646 |
| 0.24 | 1500 | 0.1443 | 0.3652 |
| 0.32 | 2000 | 0.1394 | 0.3860 |
| 0.4 | 2500 | 0.1369 | 0.3810 |
| 0.48 | 3000 | 0.1346 | 0.3895 |
| 0.56 | 3500 | 0.1358 | 0.4147 |
| 0.64 | 4000 | 0.1387 | 0.4190 |
| 0.72 | 4500 | 0.131 | 0.4254 |
| 0.8 | 5000 | 0.1314 | 0.4219 |
| 0.88 | 5500 | 0.1288 | 0.4342 |
| 0.96 | 6000 | 0.1299 | 0.4135 |
| 1.0 | 6250 | - | 0.4393 |
| 1.04 | 6500 | 0.1306 | 0.4565 |
| 1.12 | 7000 | 0.1253 | 0.4433 |
| 1.2 | 7500 | 0.1275 | 0.4486 |
| 1.28 | 8000 | 0.1265 | 0.4616 |
| 1.3600 | 8500 | 0.1237 | 0.4462 |
| 1.44 | 9000 | 0.1223 | 0.4573 |
| 1.52 | 9500 | 0.123 | 0.4609 |
| 1.6 | 10000 | 0.1251 | 0.4678 |
| 1.6800 | 10500 | 0.1262 | 0.4500 |
| 1.76 | 11000 | 0.1194 | 0.4696 |
| 1.8400 | 11500 | 0.1206 | 0.4733 |
| 1.92 | 12000 | 0.118 | 0.4701 |
| 2.0 | 12500 | 0.1238 | 0.4688 |
| 2.08 | 13000 | 0.1191 | 0.4646 |
| 2.16 | 13500 | 0.1179 | 0.4757 |
| 2.24 | 14000 | 0.1177 | 0.4652 |
| 2.32 | 14500 | 0.1176 | 0.4873 |
| 2.4 | 15000 | 0.115 | 0.4674 |
| 2.48 | 15500 | 0.1141 | 0.4784 |
| 2.56 | 16000 | 0.1143 | 0.4824 |
| 2.64 | 16500 | 0.1184 | 0.4898 |
| 2.7200 | 17000 | 0.1124 | 0.4818 |
| 2.8 | 17500 | 0.1141 | 0.4905 |
| 2.88 | 18000 | 0.1115 | 0.4850 |
| 2.96 | 18500 | 0.1123 | 0.4867 |
| 3.0 | 18750 | - | 0.4867 |
| 3.04 | 19000 | 0.1149 | 0.4849 |
| 3.12 | 19500 | 0.1114 | 0.4888 |
| 3.2 | 20000 | 0.1124 | 0.4903 |
| 3.2800 | 20500 | 0.1124 | 0.4900 |
| 3.36 | 21000 | 0.1088 | 0.4871 |
| 3.44 | 21500 | 0.1065 | 0.4835 |
| 3.52 | 22000 | 0.1075 | 0.4912 |
| 3.6 | 22500 | 0.1115 | 0.4944 |
| 3.68 | 23000 | 0.1122 | 0.4932 |
| 3.76 | 23500 | 0.1074 | 0.4917 |
| 3.84 | 24000 | 0.1081 | 0.4923 |
| 3.92 | 24500 | 0.1057 | 0.4921 |
| 4.0 | 25000 | 0.1118 | 0.4931 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}