results
This model is a fine-tuned version of indobenchmark/indobert-base-p2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7460
- Accuracy: 0.8261
- F1 Weighted: 0.8246
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.731340121428407e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Weighted |
|---|---|---|---|---|---|
| 1.0295 | 1.0 | 16 | 0.7273 | 0.7681 | 0.7574 |
| 0.4548 | 2.0 | 32 | 0.4092 | 0.8261 | 0.8301 |
| 0.3792 | 3.0 | 48 | 0.3946 | 0.8551 | 0.8549 |
| 0.266 | 4.0 | 64 | 0.4173 | 0.8551 | 0.8527 |
| 0.2277 | 5.0 | 80 | 0.3995 | 0.8696 | 0.8669 |
| 0.1261 | 6.0 | 96 | 0.3956 | 0.8696 | 0.8681 |
| 0.1185 | 7.0 | 112 | 0.4345 | 0.8841 | 0.8825 |
| 0.0919 | 8.0 | 128 | 0.5224 | 0.8406 | 0.8380 |
| 0.0568 | 9.0 | 144 | 0.3773 | 0.8986 | 0.9011 |
| 0.0418 | 10.0 | 160 | 0.6079 | 0.8986 | 0.8952 |
| 0.0317 | 11.0 | 176 | 0.6254 | 0.8551 | 0.8503 |
| 0.0584 | 12.0 | 192 | 0.5806 | 0.8551 | 0.8544 |
| 0.0304 | 13.0 | 208 | 0.6636 | 0.8551 | 0.8510 |
| 0.018 | 14.0 | 224 | 0.6549 | 0.8406 | 0.8376 |
| 0.0022 | 15.0 | 240 | 0.8044 | 0.8696 | 0.8609 |
| 0.018 | 16.0 | 256 | 0.7892 | 0.8551 | 0.8538 |
| 0.0264 | 17.0 | 272 | 0.7013 | 0.8551 | 0.8475 |
| 0.0122 | 18.0 | 288 | 0.7056 | 0.8261 | 0.8210 |
| 0.0128 | 19.0 | 304 | 0.7460 | 0.8261 | 0.8246 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 5
Model tree for Noctuaru/topik_syariah_p2_v3
Base model
indobenchmark/indobert-base-p2