results

This model is a fine-tuned version of indobenchmark/indobert-base-p2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7460
  • Accuracy: 0.8261
  • F1 Weighted: 0.8246

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.731340121428407e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Weighted
1.0295 1.0 16 0.7273 0.7681 0.7574
0.4548 2.0 32 0.4092 0.8261 0.8301
0.3792 3.0 48 0.3946 0.8551 0.8549
0.266 4.0 64 0.4173 0.8551 0.8527
0.2277 5.0 80 0.3995 0.8696 0.8669
0.1261 6.0 96 0.3956 0.8696 0.8681
0.1185 7.0 112 0.4345 0.8841 0.8825
0.0919 8.0 128 0.5224 0.8406 0.8380
0.0568 9.0 144 0.3773 0.8986 0.9011
0.0418 10.0 160 0.6079 0.8986 0.8952
0.0317 11.0 176 0.6254 0.8551 0.8503
0.0584 12.0 192 0.5806 0.8551 0.8544
0.0304 13.0 208 0.6636 0.8551 0.8510
0.018 14.0 224 0.6549 0.8406 0.8376
0.0022 15.0 240 0.8044 0.8696 0.8609
0.018 16.0 256 0.7892 0.8551 0.8538
0.0264 17.0 272 0.7013 0.8551 0.8475
0.0122 18.0 288 0.7056 0.8261 0.8210
0.0128 19.0 304 0.7460 0.8261 0.8246

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
5
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Noctuaru/topik_syariah_p2_v3

Finetuned
(83)
this model

Evaluation results