File size: 12,809 Bytes
e5e24c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Copyright (c) OpenMMLab. All rights reserved.
import itertools as it
import json
import mmap
import operator
import os
import threading
from pathlib import Path

import numpy as np
import torch
from datasets import Dataset, load_dataset, load_from_disk
from mmengine import print_log
from torch import distributed as dist
from torch.utils.data import ConcatDataset

from xtuner.dataset.map_fns import openai_map_fn
from xtuner.registry import BUILDER
from .huggingface import process


class JsonlDataset(torch.utils.data.Dataset):
    """

    JSONL format is expected to roughly follow that of The Pile.
    One-line-per-document of the form:
    ```
    {
        "input_ids": List[int],
        "labels": List[int]
    }
    ```

    """

    def __init__(self, path: str, min_length=50):
        self.path = path
        self.threadlocal = threading.local()
        resolved_path = Path(path).resolve()
        self.resolved_path = resolved_path
        self.meta = Path(f'{resolved_path}.meta')

        # only build the cache in on the primary worker to prevent
        # overloading nfs
        assert os.path.exists(
            self.meta
        ), f'The cache file:{self.meta} is not found for file:{self.path}'
        try:
            with open(self.meta, 'rb') as f:
                meta = np.load(f)
        except Exception as e:
            print(f'Cannot load file {self.meta}...')
            raise e
        self.offsets = meta[:, 0]
        self.length = meta[:, -1]

        if min_length > 0:
            mask = self.length >= min_length
            self.offsets = self.offsets[mask]
            self.length = self.length[mask]

    def __getitem__(self, idx):
        f = self._get_mmap()
        position = self.offsets[idx]
        f.seek(position)
        item = f.readline().decode('utf-8')
        try:
            item = json.loads(item)
            item['input_ids'] = item['tokens']
            del item['tokens']
            labels = [x if x > 0 else -100 for x in item['input_ids']]
            item['input_ids'] = [abs(x) for x in item['input_ids']]
            item['labels'] = labels
            item['length'] = len(item['input_ids'])  # add a length info
        except Exception as err:
            raise json.decoder.JSONDecodeError(
                doc=self.path,
                pos=position,
                msg=(f'Error while loading JSONL line in file {self.path} '
                     f'at byte {position}. Contents of line:\n{item}\n{err}'),
            )
        return item

    def get_dataset_name(self):
        return str(self.resolved_path)

    def _get_mmap(self):
        if not hasattr(self.threadlocal, 'handles'):
            with open(self.path, 'rb') as f:
                mm = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
                self.threadlocal.handles = [f, mm]
                if self.path.endswith('.gz') or self.path.endswith(
                        '.bz') or self.path.endswith('.bz2'):
                    raise NotImplementedError(
                        'Compressed files are not supported because .seek() '
                        'would require rereading the entire file, making '
                        'performance too slow.')
        return self.threadlocal.handles[-1]

    def __setstate__(self, state):
        self.__dict__ = state
        self.threadlocal = threading.local()

    def __getstate__(self):
        d = {}
        for i, v in self.__dict__.items():
            if i != 'threadlocal':
                d[i] = v
        return d

    def __del__(self):
        if hasattr(self.threadlocal, 'handles'):
            # cleanup files we opened on initialization
            while self.threadlocal.handles:
                self.threadlocal.handles.pop().close()

    @staticmethod
    def exists(path):
        return os.path.exists(path)

    def __len__(self):
        # Virtual length of the dataset depends on the epoch number
        # if the number of documents is not perfectly divisible by the
        # data_subshard_count
        return len(self.offsets)


class PackedDataset(torch.utils.data.Dataset):
    """The class PackedDataset takes in a dataset and aggregates samples of
    different lengths together based on the packed_length.

    Args:
        dataset: The original dataset to pack.
        packed_length: The length of each packed sample. Default is 8192.
    """

    def __init__(self, dataset, packed_length: int = 8192, seed: int = 1024):
        self.dataset = dataset
        self.packed_length = packed_length
        if isinstance(dataset, JsonlDataset):
            self.length = dataset.length
        elif isinstance(dataset, Dataset):
            if hasattr(dataset, 'length'):
                length = dataset.length
            else:
                length = [len(i['input_ids']) for i in dataset]
            self.length = length
        else:
            raise NotImplementedError
        self.seed = seed

        rng = np.random.RandomState(self.seed)
        shuffled_indices = np.arange(len(self.length))
        rng.shuffle(shuffled_indices)
        self.shuffled_indices = shuffled_indices.tolist()
        self.shuffled_samples_len = list(
            map(self.length.__getitem__, shuffled_indices))
        self.shuffled_accumulated_samples_len = list(
            it.accumulate(self.shuffled_samples_len, operator.add))
        self.num_tokens = sum(self.length)

    def __len__(self):
        return self.num_tokens // self.packed_length

    def search_sample_index(self, pack_idx: int = 0):
        assert pack_idx >= 0
        length_train = (pack_idx + 1) * self.packed_length
        sample_index = np.searchsorted(
            self.shuffled_accumulated_samples_len, length_train, side='left')
        return sample_index

    def mapping(self, pack_idx: int = 0):
        begin_sample_idx, begin_token_id = 0, 0
        if pack_idx > 0:
            begin_sample_idx = self.search_sample_index(pack_idx - 1)
            # The position where the previous packed data ends
            begin_token_id = self.shuffled_samples_len[begin_sample_idx] - (
                self.shuffled_accumulated_samples_len[begin_sample_idx]
                -  # noqa: W504,W503
                (pack_idx) * self.packed_length)
            if begin_token_id == self.shuffled_samples_len[begin_sample_idx]:
                begin_sample_idx += 1
                begin_token_id = 0

        end_sample_idx = self.search_sample_index(pack_idx)
        end_token_id = self.shuffled_samples_len[end_sample_idx] - (
            self.shuffled_accumulated_samples_len[end_sample_idx]
            -  # noqa: W504,W503
            (pack_idx + 1) * self.packed_length)
        return begin_sample_idx, begin_token_id, end_sample_idx, end_token_id

    def build_pack(self, begin_sample_idx: int, begin_token_id: int,
                   end_sample_idx: int, end_token_id: int):
        pack, cumulative_len, position_ids, labels = [], [0], [], []

        while begin_sample_idx < end_sample_idx:
            sample_idx = self.shuffled_indices[begin_sample_idx]
            sample = self.dataset[sample_idx]
            chunk = sample['input_ids'][begin_token_id:]
            pack.extend(chunk)
            _labels = sample['labels'][begin_token_id:]
            assert len(_labels) == len(chunk), (_labels, chunk)
            labels.extend(_labels)
            cumulative_len.append(cumulative_len[-1] + len(chunk))
            position_ids.extend(list(range(len(chunk))))
            begin_sample_idx = begin_sample_idx + 1
            begin_token_id = 0

        sample_idx = self.shuffled_indices[end_sample_idx]
        sample = self.dataset[sample_idx]
        chunk = sample['input_ids'][begin_token_id:
                                    end_token_id]  # fragment of a sample
        _labels = sample['labels'][begin_token_id:end_token_id]
        pack.extend(chunk)
        assert len(_labels) == len(chunk), (_labels, chunk)
        labels.extend(_labels)
        cumulative_len.append(cumulative_len[-1] + len(chunk))
        position_ids.extend(list(range(len(chunk))))

        out = {
            'input_ids': pack,
            'cumulative_len': cumulative_len,
            'position_ids': position_ids,
            'labels': labels
        }
        return out

    def __getitem__(self, item: int):
        pos_before, token_id_before, pos_after, token_id_after = self.mapping(
            item)
        return self.build_pack(pos_before, token_id_before, pos_after,
                               token_id_after)


def load_intern_repo_tokenized_dataset(folder,
                                       min_length=0,
                                       data_order_path=None,
                                       file_type='.bin'):
    assert os.path.exists(folder), f'{folder} does not exist.'
    datasets = []

    if data_order_path is not None:
        data_order = load_dataset(
            'text', data_files=data_order_path, split='train')['text']
        for i, fp in enumerate(data_order):
            data_order[i] = os.path.join(folder, fp)
    else:
        triples = list(os.walk(folder, followlinks=True))
        data_order = []
        for root, dirs, files in triples:
            dirs.sort()
            for fn in sorted(files):
                if fn.endswith(file_type):
                    fp = os.path.join(root, fn)
                    data_order.append(fp)

    for fp in data_order:
        print_log(f'Reading {fp}...', logger='current')
        ds = JsonlDataset(fp, min_length=min_length)

        if len(ds) == 0:
            continue
        datasets.append(ds)

    return datasets


def load_intern_repo_untokenized_dataset(processed_dataset_dict_path=None,
                                         folder=None,
                                         tokenizer=None,
                                         max_length=None,
                                         template_map_fn=None,
                                         data_order_path=None,
                                         file_type='.json'):

    assert processed_dataset_dict_path or (folder and tokenizer and max_length)

    if processed_dataset_dict_path is not None:
        ds = load_from_disk(processed_dataset_dict_path)
        datasets = []
        for key, data in ds.items():
            datasets.append((key, data))
        datasets = sorted(datasets, key=lambda x: int(x[0]))
        datasets = [x[1] for x in datasets]
        return datasets

    assert os.path.exists(folder), f'{folder} does not exist.'
    datasets = []

    if data_order_path is not None:
        data_order = load_dataset(
            'text', data_files=data_order_path, split='train')['text']
        for i, fp in enumerate(data_order):
            data_order[i] = os.path.join(folder, fp)
    else:
        triples = list(os.walk(folder, followlinks=True))
        data_order = []
        for root, dirs, files in triples:
            dirs.sort()
            for fn in sorted(files):
                if fn.endswith(file_type):
                    fp = os.path.join(root, fn)
                    data_order.append(fp)

    for fp in data_order:
        print_log(f'Reading {fp}...', logger='current')
        dataset = []
        with open(fp) as file:
            lines = file.readlines()
            for line in lines:
                line = json.loads(line)
                dataset.append({'messages': line})
        dataset = Dataset.from_list(dataset)
        dataset = process(
            dataset,
            tokenizer=tokenizer,
            max_length=max_length,
            dataset_map_fn=openai_map_fn,
            template_map_fn=template_map_fn,
            remove_unused_columns=True,
            pack_to_max_length=False,
            map_num_proc=32)

        if len(dataset) == 0:
            continue

        datasets.append(dataset)

    return datasets


def build_packed_dataset_rank0(dataset_cfg, packed_length=8192, seed=1024):
    if isinstance(dataset_cfg, dict):
        datasets = BUILDER.build(dataset_cfg)
    else:
        datasets = dataset_cfg

    if not isinstance(datasets, list):
        datasets = [datasets]

    packed_datasets = []

    for dataset in datasets:
        ds = PackedDataset(dataset, packed_length, seed=seed)
        packed_datasets.append(ds)

    dataset = ConcatDataset(datasets=packed_datasets)

    return dataset


def build_packed_dataset(*args, **kwargs):
    if not (dist.is_available() and dist.is_initialized()):
        return build_packed_dataset_rank0(*args, **kwargs)

    if dist.get_rank() == 0:
        dataset = build_packed_dataset_rank0(*args, **kwargs)
        objects = [dataset]
    else:
        objects = [None]
    dist.broadcast_object_list(objects, src=0)
    return objects[0]