File size: 5,289 Bytes
e5e24c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
from torch import nn
import numpy as np

class PPEG(nn.Module):
    def __init__(self, dim=512,k=7,conv_1d=False,bias=True):
        super(PPEG, self).__init__()
        self.proj = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim,bias=bias) if not conv_1d else nn.Conv2d(dim, dim, (k,1), 1, (k//2,0), groups=dim,bias=bias)
        self.proj1 = nn.Conv2d(dim, dim, 5, 1, 5//2, groups=dim,bias=bias) if not conv_1d else nn.Conv2d(dim, dim, (5,1), 1, (5//2,0), groups=dim,bias=bias)
        self.proj2 = nn.Conv2d(dim, dim, 3, 1, 3//2, groups=dim,bias=bias) if not conv_1d else nn.Conv2d(dim, dim, (3,1), 1, (3//2,0), groups=dim,bias=bias)

    def forward(self, x):
        B, N, C = x.shape

        # padding
        H, W = int(np.ceil(np.sqrt(N))), int(np.ceil(np.sqrt(N)))
        
        add_length = H * W - N
        # if add_length >0:
        x = torch.cat([x, x[:,:add_length,:]],dim = 1) 

        if H < 7:
            H,W = 7,7
            zero_pad = H * W - (N+add_length)
            x = torch.cat([x, torch.zeros((B,zero_pad,C),device=x.device)],dim = 1)
            add_length += zero_pad

        # H, W = int(N**0.5),int(N**0.5)
        # cls_token, feat_token = x[:, 0], x[:, 1:]
        # feat_token = x
        cnn_feat = x.transpose(1, 2).view(B, C, H, W)

        x = self.proj(cnn_feat)+cnn_feat+self.proj1(cnn_feat)+self.proj2(cnn_feat)
        x = x.flatten(2).transpose(1, 2)
        # print(add_length)
        if add_length >0:
            x = x[:,:-add_length]
        # x = torch.cat((cls_token.unsqueeze(1), x), dim=1)
        return x

class PEG(nn.Module):
    def __init__(self, dim=512,k=7,bias=True,conv_1d=False):
        super(PEG, self).__init__()
        self.proj = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim,bias=bias) if not conv_1d else nn.Conv2d(dim, dim, (k,1), 1, (k//2,0), groups=dim,bias=bias)

    def forward(self, x):
        B, N, C = x.shape

        # padding
        H, W = int(np.ceil(np.sqrt(N))), int(np.ceil(np.sqrt(N)))
        add_length = H * W - N
        x = torch.cat([x, x[:,:add_length,:]],dim = 1)

        feat_token = x
        cnn_feat = feat_token.transpose(1, 2).view(B, C, H, W)
        x = self.proj(cnn_feat)+cnn_feat

        x = x.flatten(2).transpose(1, 2)
        if add_length >0:
            x = x[:,:-add_length]

        # x = torch.cat((cls_token.unsqueeze(1), x), dim=1)
        return x


class SINCOS(nn.Module):
    def __init__(self,embed_dim=512):
        super(SINCOS, self).__init__()
        self.embed_dim = embed_dim
        self.pos_embed = self.get_2d_sincos_pos_embed(embed_dim, 8)
    def get_1d_sincos_pos_embed_from_grid(self,embed_dim, pos):
        """
        embed_dim: output dimension for each position
        pos: a list of positions to be encoded: size (M,)
        out: (M, D)
        """
        assert embed_dim % 2 == 0
        omega = np.arange(embed_dim // 2, dtype=np.float)
        omega /= embed_dim / 2.
        omega = 1. / 10000**omega  # (D/2,)

        pos = pos.reshape(-1)  # (M,)
        out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

        emb_sin = np.sin(out) # (M, D/2)
        emb_cos = np.cos(out) # (M, D/2)

        emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
        return emb

    def get_2d_sincos_pos_embed_from_grid(self,embed_dim, grid):
        assert embed_dim % 2 == 0

        # use half of dimensions to encode grid_h
        emb_h = self.get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
        emb_w = self.get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

        emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
        return emb

    def get_2d_sincos_pos_embed(self,embed_dim, grid_size, cls_token=False):
        """
        grid_size: int of the grid height and width
        return:
        pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
        """
        grid_h = np.arange(grid_size, dtype=np.float32)
        grid_w = np.arange(grid_size, dtype=np.float32)
        grid = np.meshgrid(grid_w, grid_h)  # here w goes first
        grid = np.stack(grid, axis=0)

        grid = grid.reshape([2, 1, grid_size, grid_size])
        pos_embed = self.get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
        if cls_token:
            pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
        return pos_embed

    def forward(self, x):
        #B, N, C = x.shape
        B,H,W,C = x.shape
        # # padding
        # H, W = int(np.ceil(np.sqrt(N))), int(np.ceil(np.sqrt(N)))
        # add_length = H * W - N
        # x = torch.cat([x, x[:,:add_length,:]],dim = 1)

        # pos_embed = torch.zeros(1, H * W + 1, self.embed_dim)
        # pos_embed = self.get_2d_sincos_pos_embed(pos_embed.shape[-1], int(H), cls_token=True)
        #pos_embed = torch.from_numpy(self.pos_embed).float().unsqueeze(0).to(x.device)

        pos_embed = torch.from_numpy(self.pos_embed).float().to(x.device)

        # print(pos_embed.size())
        # print(x.size())
        x = x + pos_embed.unsqueeze(1).unsqueeze(1).repeat(1,H,W,1)
        

        #x = x + pos_embed[:, 1:, :]

        # if add_length >0:
        #     x = x[:,:-add_length]

        return x