pure_model_weights / code /xtuner /model /llava_compressor.py
WinstonHu's picture
Upload folder xtuner to code/xtuner
e5e24c9 verified
raw
history blame
39.7 kB
# Copyright (c) OpenMMLab. All rights reserved.
import math
import copy
import os.path as osp
import warnings
from collections import OrderedDict
import torch
import torch.nn as nn
import numpy as np
from accelerate import init_empty_weights
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from mmengine.model import BaseModel
from peft import get_peft_model, prepare_model_for_kbit_training
from transformers import (AddedToken, AutoConfig, CLIPImageProcessor,
CLIPVisionModel, LlamaForCausalLM,
LlamaTokenizerFast, LlavaConfig,
LlavaForConditionalGeneration, LlavaProcessor
)
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers import PreTrainedModel, PretrainedConfig
from xtuner.registry import BUILDER
from xtuner.utils import DEFAULT_IMAGE_TOKEN
from .modules import ProjectorConfig, ProjectorModel, dispatch_modules
from .modules.dispatch import SUPPORT_FLASH1, SUPPORT_FLASH2
from .utils import (LoadWoInit, find_all_linear_names,
get_peft_model_state_dict, guess_load_checkpoint,
make_inputs_require_grad,
prepare_inputs_labels_for_multimodal, traverse_dict)
from .torchscale.model.LongNet import make_longnet_from_name
from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer
import torch.nn.functional as F
from torch.nn.init import trunc_normal_
# ====================== Copied from first file ====================== #
def get_abs_pos(abs_pos, tgt_size):
"""
Interpolates 1D absolute positional embeddings to a target size.
This function is modified to handle 1D positional embeddings, which is
suitable for sequences of tokens that do not form a square grid.
Args:
abs_pos (torch.Tensor): The absolute positional embedding tensor of shape (N, C),
where N is the original sequence length and C is the embedding dim.
tgt_size (int): The target sequence length.
Returns:
torch.Tensor: The interpolated positional embedding tensor of shape (tgt_size, C).
"""
src_size = abs_pos.size(0)
dtype = abs_pos.dtype
if src_size == tgt_size:
return abs_pos
# For 1D interpolation, input tensor to F.interpolate should be (N, C, L)
# We reshape our (L, C) tensor to (1, C, L)
interp_input = abs_pos.float().permute(1, 0).unsqueeze(0)
# Perform linear interpolation
interp_output = F.interpolate(
interp_input,
size=tgt_size,
mode='linear',
align_corners=False,
)
# Reshape back to (L_new, C)
interpolated_pos = interp_output.squeeze(0).permute(1, 0).to(dtype)
return interpolated_pos
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h)
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])
emb = np.concatenate([emb_h, emb_w], axis=1)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.
omega = 1. / 10000**omega
pos = pos.reshape(-1)
out = np.einsum('m,d->md', pos, omega)
emb_sin = np.sin(out)
emb_cos = np.cos(out)
emb = np.concatenate([emb_sin, emb_cos], axis=1)
return emb
# Step 1: Create a configuration class for the Resampler
class ResamplerConfig(PretrainedConfig):
"""
Configuration class for the Resampler module.
"""
model_type = "resampler"
_auto_class = 'AutoConfig'
def __init__(
self,
grid_size,
embed_dim,
num_heads,
kv_dim=None,
norm_layer=nn.LayerNorm,
**kwargs
):
self.grid_size = grid_size
self.embed_dim = embed_dim
self.num_heads = num_heads
self.kv_dim = kv_dim
# self.hidden_act = hidden_act
self.norm_layer = norm_layer
super().__init__(**kwargs)
class Resampler(PreTrainedModel):
_auto_class = 'AutoModel'
config_class = ResamplerConfig
base_model_prefix = 'model'
supports_gradient_checkpointing = True
def __init__(
self,
config: ResamplerConfig
):
super().__init__(config)
self.gradient_checkpointing = False
self.num_queries = config.grid_size
self.embed_dim = config.embed_dim
self.num_heads = config.num_heads
kv_dim = config.kv_dim
norm_layer = config.norm_layer
# REMOVED: Positional embedding initialization
self.query = nn.Parameter(torch.zeros(self.num_queries, self.embed_dim))
self.query.data.normal_(mean=0.0, std=0.02)
if kv_dim is not None and kv_dim != self.embed_dim:
self.kv_proj = nn.Linear(kv_dim, self.embed_dim, bias=False)
else:
self.kv_proj = nn.Identity()
self.attn = nn.MultiheadAttention(self.embed_dim, self.num_heads, batch_first=True)
self.ln_q = norm_layer(self.embed_dim)
self.ln_kv = norm_layer(self.embed_dim)
nn.init.constant_(self.ln_q.bias, 0)
nn.init.constant_(self.ln_q.weight, 1.0)
nn.init.constant_(self.ln_kv.bias, 0)
nn.init.constant_(self.ln_kv.weight, 1.0)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def init_weights(self):
self.query.data.normal_(mean=0.0, std=0.02)
nn.init.constant_(self.ln_q.bias, 0)
nn.init.constant_(self.ln_q.weight, 1.0)
nn.init.constant_(self.ln_kv.bias, 0)
nn.init.constant_(self.ln_kv.weight, 1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, Resampler):
module.gradient_checkpointing = value
def forward(self, x, attn_mask=None, text=None):
Q = self.query
x = self.kv_proj(x)
x = self.ln_kv(x)
Q = self.ln_q(Q)
# REMOVED: Positional embedding interpolation and addition
out, attn = self.attn(
Q.unsqueeze(0).expand(x.size(0), Q.size(0), Q.size(1)),
x,
x,
attn_mask=attn_mask
)
return out, attn
# ====================== End of copied code ====================== #
def convert_state_dict_to_hf(state_dict, mapping):
new_state_dict = {}
for key, value in state_dict.items():
if key.endswith('.inv_freq'):
continue
for key_to_modify, new_key in mapping.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
new_state_dict[key] = value
return new_state_dict
class LLaVAModel(BaseModel):
def __init__(self,
llm,
freeze_llm=True,
visual_select_layer=-2,
pretrained_pth=None,
projector_depth=2,
llm_lora=None,
visual_encoder_lora=None,
use_activation_checkpointing=True,
max_position_embeddings=None,
hidden_size=512,
train_stage='2',
enable_long_net=True,
compressor_grid_size=2, # New parameter
compressor_embed_dim=512, # New parameter
prefusion_layer_num=4): # New parameter for prefusion layers
super().__init__()
self.enable_long_net = enable_long_net
if enable_long_net:
print('enable long net')
else:
print('disable long net')
self.freeze_llm = freeze_llm
self.freeze_visual_encoder = True
if train_stage == '1':
print('train_stage == 1')
self.freeze_llm = True
self.freeze_long_net = False
elif train_stage == '2':
print('train_stage == 2')
self.freeze_llm = True
self.freeze_long_net = True
with LoadWoInit():
if isinstance(llm, dict):
llm = self._dispatch_lm_model_cfg(llm, max_position_embeddings)
self.llm = self._build_from_cfg_or_module(llm)
self.encoder_name = "LongNet_{}_layers_{}_dim".format(2, 512)
self.LongNet_encoder = make_longnet_from_name(self.encoder_name)
self.llm.config.use_cache = False
dispatch_modules(self.llm)
self.projector_depth = projector_depth
self.compressor_grid_size = compressor_grid_size
self.compressor_embed_dim = compressor_embed_dim
self.prefusion_layer_num = prefusion_layer_num
# Build compressor
compressor_config = ResamplerConfig(
grid_size=compressor_grid_size,
embed_dim=compressor_embed_dim,
kv_dim= None,
num_heads= 8, # Default value, can be adjusted
)
self.compressor = Resampler(
config=compressor_config
)
self.compressor.init_weights()
projector_config = ProjectorConfig(
visual_hidden_size=hidden_size,
llm_hidden_size=self.llm.config.hidden_size,
depth=self.projector_depth)
self.projector = ProjectorModel(projector_config).to(
self.llm.dtype)
# Build prefusion layers
temps = copy.deepcopy(self.llm.model.layers[:prefusion_layer_num])
self.prefusion_layers = nn.ModuleList(temps)
del temps
# self.prefusion_layers=nn.ModuleList([Qwen2DecoderLayer(self.llm.config,layer_idx=i) for i in range(self.prefusion_layer_num)])
self.prefusion_layers.to(self.llm.dtype)
if self.freeze_llm:
print('freeze_llm')
self.llm.requires_grad_(False)
if self.freeze_long_net:
print('freeze_long_net')
self.LongNet_encoder.requires_grad_(False)
# Move to correct dtype and device
self.compressor = self.compressor.to(self.llm.dtype)
if use_activation_checkpointing:
if hasattr(self.llm, 'enable_input_require_grads'):
self.llm.enable_input_require_grads()
else:
self.llm.get_input_embeddings().register_forward_hook(
make_inputs_require_grad)
self.projector.enable_input_require_grads()
# for layer in self.prefusion_layers:
# if hasattr(layer, 'enable_input_require_grads'):
# layer.enable_input_require_grads()
# else:
# layer.get_input_embeddings().register_forward_hook(
# make_inputs_require_grad)
# enable gradient (activation) checkpointing for memory efficiency
self.gradient_checkpointing_enable()
self.use_llm_lora = None
self.use_visual_encoder_lora = None
if self.use_llm_lora:
self._prepare_llm_for_lora(llm_lora, use_activation_checkpointing)
if pretrained_pth is not None: # load the pretrained checkpoint
pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
self.load_state_dict(pretrained_state_dict, strict=False)
print_log(f'Load pretrained weight from {pretrained_pth}', 'current')
self.visual_select_layer = visual_select_layer
self._is_init = True
self.is_first_iter = True
def _parse_lora_config(self, lora_config):
if isinstance(lora_config, dict) or isinstance(
lora_config, Config) or isinstance(lora_config, ConfigDict):
lora_config = BUILDER.build(lora_config)
return lora_config
def _prepare_llm_for_lora(self,
lora_config,
use_activation_checkpointing=True):
lora_config = self._parse_lora_config(lora_config)
self.llm = prepare_model_for_kbit_training(
self.llm, use_activation_checkpointing)
if lora_config.target_modules is None:
modules = find_all_linear_names(self.llm)
lora_config.target_modules = modules
self.llm = get_peft_model(self.llm, lora_config)
def _prepare_visual_encoder_for_lora(self,
lora_config,
use_activation_checkpointing=True):
lora_config = self._parse_lora_config(lora_config)
if lora_config.target_modules is None:
modules = find_all_linear_names(self.visual_encoder)
lora_config.target_modules = modules
self.visual_encoder = get_peft_model(self.visual_encoder, lora_config)
def gradient_checkpointing_enable(self):
self.activation_checkpointing_enable()
def activation_checkpointing_enable(self):
self.llm.gradient_checkpointing_enable()
self.compressor.gradient_checkpointing_enable()
self.projector.gradient_checkpointing_enable()
# for layer in self.prefusion_layers:
# layer.gradient_checkpointing_enable()
def gradient_checkpointing_disable(self):
self.activation_checkpointing_disable()
def activation_checkpointing_disable(self):
self.llm.gradient_checkpointing_disable()
self.compressor.gradient_checkpointing_disable()
self.projector.gradient_checkpointing_disable()
# for layer in self.prefusion_layers:
# layer.gradient_checkpointing_disable()
def init_weights(self):
pass
def state_dict(self, *args, **kwargs):
state_dict = super().state_dict(*args, **kwargs)
to_return = OrderedDict()
# Step 1. visual_encoder
if self.use_visual_encoder_lora:
to_return.update(
get_peft_model_state_dict(
self.visual_encoder, state_dict=state_dict))
elif not self.freeze_visual_encoder:
to_return.update({
k: v
for k, v in state_dict.items() if 'visual_encoder.' in k
})
# Step 2. LLM
if self.use_llm_lora:
to_return.update(
get_peft_model_state_dict(self.llm, state_dict=state_dict))
elif not self.freeze_llm:
to_return.update(
{k: v
for k, v in state_dict.items() if 'llm.' in k})
# Step 3. Compressor and Projector
to_return.update(
{k: v
for k, v in state_dict.items() if 'compressor.' in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'projector.' in k})
# Step 4. Prefusion layers
to_return.update(
{k: v
for k, v in state_dict.items() if 'prefusion_layers.' in k})
# Step 5. LongNet_encoder
to_return.update(
{k: v
for k, v in state_dict.items() if 'LongNet_encoder.' in k})
return to_return
@staticmethod
def _prepare_for_long_context_training(cfg, llm_cfg,
max_position_embeddings):
orig_rope_scaling = getattr(llm_cfg, 'rope_scaling', None)
if orig_rope_scaling is None:
orig_rope_scaling = {'factor': 1}
orig_rope_scaling_factor = orig_rope_scaling[
'factor'] if 'factor' in orig_rope_scaling.keys() else 1
orig_ctx_len = getattr(llm_cfg, 'max_position_embeddings', None)
if orig_ctx_len:
orig_ctx_len *= orig_rope_scaling_factor
if max_position_embeddings > orig_ctx_len:
scaling_factor = float(
math.ceil(max_position_embeddings / orig_ctx_len))
llm_cfg.rope_scaling = {
'type': 'linear',
'factor': scaling_factor
}
# hardcode for internlm2
llm_cfg.attn_implementation = 'flash_attention_2'
cfg.config = llm_cfg
return cfg, llm_cfg
@staticmethod
def _prepare_for_flash_attn(cfg, llm_cfg):
cls_name = type(llm_cfg).__name__
SUPPORT_SDPA_ATTN = ('LlamaConfig', 'GemmaConfig', 'MistralConfig',
'MixtralConfig', 'Qwen2Config', 'Qwen2MoeConfig',
'Starcoder2Config', 'Starcoder2Config',
'Phi3Config')
SUPPORT_FLASH_ATTN2 = ('InternLM2Config', 'LlamaConfig', 'GemmaConfig',
'MistralConfig', 'MixtralConfig', 'Qwen2Config',
'Qwen2MoeConfig', 'Starcoder2Config',
'Starcoder2Config', 'Phi3Config')
torch_dtype = torch.bfloat16 if (
torch.cuda.is_available() and torch.cuda.is_bf16_supported()) \
else torch.float16
if getattr(cfg, 'attn_implementation', None) is not None:
# Flash Attention 2.0 only supports torch.float16 and
# torch.bfloat16 dtypes
if cfg.attn_implementation == 'flash_attention_2':
cfg.torch_dtype = torch_dtype
elif SUPPORT_FLASH2 and cls_name in SUPPORT_FLASH_ATTN2:
cfg.torch_dtype = torch_dtype
cfg.attn_implementation = 'flash_attention_2'
elif SUPPORT_FLASH1 and cls_name in SUPPORT_SDPA_ATTN:
cfg.attn_implementation = 'sdpa'
return cfg, llm_cfg
@staticmethod
def _prepare_for_qlora_zero3(cfg):
if (not is_deepspeed_zero3_enabled()) or (not hasattr(
cfg, 'quantization_config')):
return cfg
torch_dtype = torch.bfloat16 if (
torch.cuda.is_available() and torch.cuda.is_bf16_supported()) \
else torch.float16
cfg.torch_dtype = torch_dtype
quantization_config = cfg.quantization_config
quantization_config.bnb_4bit_compute_dtype = torch_dtype
quantization_config.bnb_4bit_quant_storage = torch_dtype
return cfg
def _dispatch_lm_model_cfg(self, cfg, max_position_embeddings=None):
cfg = self._prepare_for_qlora_zero3(cfg)
pretrained_model_name_or_path = cfg.pretrained_model_name_or_path
llm_cfg = AutoConfig.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=True)
cfg, llm_cfg = self._prepare_for_flash_attn(cfg, llm_cfg)
if max_position_embeddings is not None:
cfg, llm_cfg = self._prepare_for_long_context_training(
cfg, llm_cfg, max_position_embeddings)
return cfg
def _build_from_cfg_or_module(self, cfg_or_mod):
if isinstance(cfg_or_mod, nn.Module):
return cfg_or_mod
elif isinstance(cfg_or_mod, dict):
traverse_dict(cfg_or_mod)
return BUILDER.build(cfg_or_mod)
else:
raise NotImplementedError
def forward(self, data, data_samples=None, mode='loss'):
if self.is_first_iter:
self.to(data['input_ids'].device)
self.is_first_iter = False
if 'pixel_values' in data:
feat_to_proj = data['pixel_values'].to(self.llm.dtype)
if self.enable_long_net:
long_net_output = self.LongNet_encoder(src_tokens=None, token_embeddings=feat_to_proj.permute(1, 0, 2))["encoder_out"]
feat_to_proj = long_net_output.permute(1, 0, 2)
# Apply compressor
compressed_features, _ = self.compressor(feat_to_proj)
# print_log('compressed_features shape: {}'.format(compressed_features.shape), 'current')
# Apply projector
pixel_values = self.projector(compressed_features)
projected_global_image_features = self.projector(feat_to_proj)
# Apply prefusion layers if any
if self.prefusion_layer_num > 0:
# print_log('Applying prefusion layers', 'current')
input_ids = data['input_ids']
text_embeddings = self.llm.get_input_embeddings()(input_ids.clamp(min=0)).detach()
padding_mask=(input_ids <= 0)
# attention_mask = data['attention_mask']
# position_ids = data.get('position_ids', None)
x = torch.cat([projected_global_image_features, pixel_values, text_embeddings], dim=1)
mask=torch.cat((torch.zeros((padding_mask.size(0),projected_global_image_features.size(1)+pixel_values.size(1)),device=padding_mask.device).bool(),padding_mask),dim=1)
# Prepare attention mask for prefusion layers
if getattr(self.llm, "_use_flash_attention_2", False) or \
getattr(self.llm.config, "_attn_implementation", "") == "flash_attention_2":
attention_mask = (~mask).int()
else:
attention_mask =_prepare_4d_causal_attention_mask(~mask, (x.size(0), x.size(1)), x, 0)
position_ids = (~mask).int().long().cumsum(-1) - 1
position_ids.masked_fill_((~mask).int() == 0, 1)
# Apply prefusion layers
for layer in self.prefusion_layers:
x = layer(
x,
attention_mask=attention_mask,
position_ids=position_ids,
use_cache=False,
)[0]
# data['inputs_embeds'] = x
fusion_text_features=x[:,-1*input_ids.size(1):,:]
pixel_values=x[:,-1*input_ids.size(1)-1*pixel_values.size(1):-1*input_ids.size(1),:]
fusion_text_features=fusion_text_features*(~padding_mask).unsqueeze(-1).int()+ text_embeddings*padding_mask.unsqueeze(-1)
data['text_features'] = fusion_text_features
# print_log('text_features shape: {}'.format(fusion_text_features.shape), 'current')
data['pixel_values'] = pixel_values
data = prepare_inputs_labels_for_multimodal(llm=self.llm, **data)
if mode == 'loss':
return self.compute_loss(data, data_samples)
elif mode == 'predict':
return self.predict(data, data_samples)
elif mode == 'tensor':
return self._forward(data, data_samples)
else:
raise NotImplementedError
def _forward(self, data, data_samples=None):
outputs = self.llm(**data)
return outputs
def predict(self, data, data_samples=None):
outputs = self.llm(**data)
logits_dict = [{'logits': logits} for logits in outputs.logits]
return logits_dict
def compute_loss(self, data, data_samples=None):
outputs = self.llm(**data)
loss_dict = {'loss': outputs.loss}
return loss_dict
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.llm, name)
def to_hf(self,
cfg,
save_dir,
fp32=False,
save_pretrained_kwargs={},
save_format='xtuner',
**kwargs):
if save_format == 'xtuner':
self.to_xtuner_llava(cfg, save_dir, fp32, save_pretrained_kwargs)
elif save_format == 'huggingface':
self.to_huggingface_llava(cfg, save_dir, fp32,
save_pretrained_kwargs)
elif save_format == 'official':
self.to_official_llava(cfg, save_dir, fp32, save_pretrained_kwargs)
else:
raise NotImplementedError
def to_xtuner_llava(self,
cfg,
save_dir,
fp32=False,
save_pretrained_kwargs={}):
self.llm.config.use_cache = True
if not fp32:
print_log('Convert LLM to float16', 'current')
self.llm.half()
if self.use_llm_lora:
llm_path = osp.join(save_dir, 'llm_adapter')
print_log(f'Saving LLM adapter to {llm_path}', 'current')
self.llm.save_pretrained(llm_path, **save_pretrained_kwargs)
elif not self.freeze_llm:
llm_path = save_dir
print_log(f'Saving LLM tokenizer to {llm_path}', 'current')
tokenizer = BUILDER.build(cfg.tokenizer)
tokenizer.save_pretrained(llm_path, **save_pretrained_kwargs)
print_log(f'Saving LLM to {llm_path}', 'current')
self.llm.save_pretrained(llm_path, **save_pretrained_kwargs)
self.llm.config.use_cache = False
# Visual Encoder
if self.use_visual_encoder_lora:
visual_encoder_path = osp.join(save_dir, 'visual_encoder_adapter')
print_log(
f'Saving visual_encoder adapter to {visual_encoder_path}',
'current')
self.visual_encoder.save_pretrained(visual_encoder_path,
**save_pretrained_kwargs)
elif not self.freeze_visual_encoder:
visual_encoder_path = osp.join(save_dir, 'visual_encoder')
print_log(
'Saving visual_encoder image_processor to'
f'{visual_encoder_path}', 'current')
image_processor = BUILDER.build(cfg.image_processor)
image_processor.save_pretrained(visual_encoder_path,
**save_pretrained_kwargs)
print_log(f'Saving visual_encoder to {visual_encoder_path}',
'current')
self.visual_encoder.save_pretrained(visual_encoder_path,
**save_pretrained_kwargs)
# projector
projector_path = osp.join(save_dir, 'projector')
print_log(f'Saving projector to {projector_path}', 'current')
self.projector.save_pretrained(projector_path,
**save_pretrained_kwargs)
# compressor
compressor_path = osp.join(save_dir, 'compressor')
print_log(f'Saving compressor to {compressor_path}', 'current')
self.compressor.save_pretrained(compressor_path,
**save_pretrained_kwargs)
# Prefusion layers
if self.prefusion_layer_num > 0:
prefusion_path = osp.join(save_dir, 'prefusion_layers')
print_log(f'Saving prefusion layers to {prefusion_path}', 'current')
torch.save(self.prefusion_layers.state_dict(),
osp.join(prefusion_path, 'prefusion_layers.bin'))
# LongNet_encoder
LongNet_encoder_path = osp.join(save_dir, 'LongNet_encoder')
print_log(f'Saving LongNet_encoder to {LongNet_encoder_path}', 'current')
self.LongNet_encoder.save_pretrained(LongNet_encoder_path,
**save_pretrained_kwargs)
def to_huggingface_llava(self,
cfg,
save_dir,
fp32=False,
save_pretrained_kwargs={}):
LLM_MAPPING = {
'model': 'language_model.model',
'lm_head': 'language_model.lm_head',
}
VIT_MAPPING = {
'vision_model': 'vision_tower.vision_model',
}
PROJECTOR_MAPPING = {
'model.0': 'multi_modal_projector.linear_1',
'model.2': 'multi_modal_projector.linear_2',
}
COMPRESSOR_MAPPING = {
'compressor': 'compressor'
}
PREFUSION_MAPPING = {
'prefusion_layers': 'prefusion_layers'
}
LONGNET_MAPPING = {
'layers.0': 'LongNet_encoder.layers.0',
'layers.1': 'LongNet_encoder.layers.1',
'layer_norm': 'LongNet_encoder.layer_norm'
}
assert getattr(self.llm, 'hf_quantizer', None) is None, \
'This conversion format does not support quantized LLM.'
# get state_dict
llm = self.llm
if self.use_llm_lora:
llm = self.llm.merge_and_unload()
llm.config.use_cache = True
if not fp32:
print_log('Convert LLM to float16', 'current')
llm.half()
assert isinstance(llm, LlamaForCausalLM), \
'This conversion format only supports LlamaForCausalLM.'
llm_state_dict = llm.state_dict()
llm_state_dict = convert_state_dict_to_hf(llm_state_dict, LLM_MAPPING)
need_visual_encoder = (not self.freeze_visual_encoder
or self.use_visual_encoder_lora)
visual_encoder = self.visual_encoder
if self.use_visual_encoder_lora:
visual_encoder = self.visual_encoder.merge_and_unload()
assert isinstance(visual_encoder, CLIPVisionModel),\
'This conversion format only supports CLIPVisionModel.'
if need_visual_encoder:
visual_encoder_state_dict = visual_encoder.state_dict()
visual_encoder_state_dict = convert_state_dict_to_hf(
visual_encoder_state_dict, VIT_MAPPING)
else:
visual_encoder_state_dict = {}
compressor_state_dict = self.compressor.state_dict()
compressor_state_dict = convert_state_dict_to_hf(
compressor_state_dict, COMPRESSOR_MAPPING)
projector_state_dict = self.projector.state_dict()
projector_state_dict = convert_state_dict_to_hf(
projector_state_dict, PROJECTOR_MAPPING)
prefusion_state_dict = self.prefusion_layers.state_dict()
prefusion_state_dict = convert_state_dict_to_hf(
prefusion_state_dict, PREFUSION_MAPPING)
LongNet_encoder_state_dict = self.LongNet_encoder.state_dict()
LongNet_encoder_state_dict = convert_state_dict_to_hf(
LongNet_encoder_state_dict, LONGNET_MAPPING)
state_dict = {
**projector_state_dict,
**compressor_state_dict,
**prefusion_state_dict,
**llm_state_dict,
**visual_encoder_state_dict,
**LongNet_encoder_state_dict
}
# init model
text_config = llm.config
vision_config = visual_encoder.config
config = LlavaConfig(
text_config=text_config,
vision_config=vision_config,
attn_implementation='eager')
with init_empty_weights():
with warnings.catch_warnings():
warnings.filterwarnings(
'ignore', message='.*non-meta.*', category=UserWarning)
model = LlavaForConditionalGeneration(config)
model.load_state_dict(state_dict, strict=True, assign=True)
# processor
cfg.tokenizer.type = LlamaTokenizerFast.from_pretrained
tokenizer = BUILDER.build(cfg.tokenizer)
tokenizer.add_tokens(
AddedToken(DEFAULT_IMAGE_TOKEN, special=True, normalized=False),
special_tokens=True)
tokenizer.add_special_tokens({'pad_token': '<pad>'})
image_processor = BUILDER.build(cfg.image_processor)
assert isinstance(image_processor, CLIPImageProcessor),\
'This conversion format only supports CLIPImageProcessor.'
processor = LlavaProcessor(
tokenizer=tokenizer, image_processor=image_processor)
# Pad to 64 for performance reasons
pad_shape = 64
pre_expansion_embeddings = \
model.language_model.model.embed_tokens.weight.data
mu = torch.mean(pre_expansion_embeddings, dim=0).float()
n = pre_expansion_embeddings.size()[0]
sigma = ((pre_expansion_embeddings - mu).T
@ (pre_expansion_embeddings - mu)) / n
dist = torch.distributions.multivariate_normal.MultivariateNormal(
mu, covariance_matrix=1e-5 * sigma)
# We add an image token so we need to resize the model
ori_vocab_size = config.text_config.vocab_size
tokenizer_vocab_size = tokenizer.encode('<pad>')[-1]
added_token = tokenizer_vocab_size - ori_vocab_size
if added_token > 0:
model.resize_token_embeddings(ori_vocab_size + added_token,
pad_shape)
model.language_model.model.embed_tokens.weight.data[
ori_vocab_size:] = torch.stack(
tuple(
dist.sample()
for _ in range(model.language_model.model.embed_tokens.
weight.data[ori_vocab_size:].shape[0])),
dim=0,
)
model.language_model.lm_head.weight.data[
ori_vocab_size:] = torch.stack(
tuple(dist.sample()
for _ in range(model.language_model.lm_head.weight.
data[ori_vocab_size:].shape[0])),
dim=0,
)
model.config.image_token_index = tokenizer.encode(
DEFAULT_IMAGE_TOKEN)[-1]
model.config.pad_token_id = tokenizer.encode('<pad>')[-1]
# save
print_log(f'Saving to {save_dir}', 'current')
model.save_pretrained(save_dir, **save_pretrained_kwargs)
processor.save_pretrained(save_dir, **save_pretrained_kwargs)
def to_official_llava(self,
cfg,
save_dir,
fp32=False,
save_pretrained_kwargs={}):
VIT_MAPPING = {
'vision_model': 'model.vision_tower.vision_tower.vision_model',
}
PROJECTOR_MAPPING = {
'model.0': 'model.mm_projector.0',
'model.2': 'model.mm_projector.2',
}
COMPRESSOR_MAPPING = {
'compressor': 'model.compressor'
}
PREFUSION_MAPPING = {
'prefusion_layers': 'model.prefusion_layers'
}
LONGNET_MAPPING = {
'layers.0': 'LongNet_encoder.layers.0',
'layers.1': 'LongNet_encoder.layers.1',
'layer_norm': 'LongNet_encoder.layer_norm'
}
try:
from llava.model import LlavaConfig, LlavaLlamaForCausalLM
except ImportError:
raise ImportError(
'Please install llava with '
'`pip install git+https://github.com/haotian-liu/LLaVA.git '
'--no-deps`.')
assert getattr(self.llm, 'hf_quantizer', None) is None, \
'This conversion format does not support quantized LLM.'
# get state_dict
llm = self.llm
if self.use_llm_lora:
llm = self.llm.merge_and_unload()
llm.config.use_cache = True
if not fp32:
print_log('Convert LLM to float16', 'current')
llm.half()
assert isinstance(llm, LlamaForCausalLM), \
'This conversion format only supports LlamaForCausalLM.'
llm_state_dict = llm.state_dict()
need_visual_encoder = (not self.freeze_visual_encoder
or self.use_visual_encoder_lora)
visual_encoder = self.visual_encoder
if self.use_visual_encoder_lora:
visual_encoder = self.visual_encoder.merge_and_unload()
assert isinstance(visual_encoder, CLIPVisionModel),\
'This conversion format only supports CLIPVisionModel.'
if need_visual_encoder:
visual_encoder_state_dict = visual_encoder.state_dict()
visual_encoder_state_dict = convert_state_dict_to_hf(
visual_encoder_state_dict, VIT_MAPPING)
else:
visual_encoder_state_dict = {}
compressor_state_dict = self.compressor.state_dict()
compressor_state_dict = convert_state_dict_to_hf(
compressor_state_dict, COMPRESSOR_MAPPING)
projector_state_dict = self.projector.state_dict()
projector_state_dict = convert_state_dict_to_hf(
projector_state_dict, PROJECTOR_MAPPING)
prefusion_state_dict = self.prefusion_layers.state_dict()
prefusion_state_dict = convert_state_dict_to_hf(
prefusion_state_dict, PREFUSION_MAPPING)
LongNet_encoder_state_dict = self.LongNet_encoder.state_dict()
LongNet_encoder_state_dict = convert_state_dict_to_hf(
LongNet_encoder_state_dict, LONGNET_MAPPING)
state_dict = {
**projector_state_dict,
**compressor_state_dict,
**prefusion_state_dict,
**llm_state_dict,
**visual_encoder_state_dict,
**LongNet_encoder_state_dict
}
# init model
tokenizer = BUILDER.build(cfg.tokenizer)
image_processor = BUILDER.build(cfg.image_processor)
assert isinstance(image_processor, CLIPImageProcessor),\
'This conversion format only supports CLIPImageProcessor.'
llava_config_dict = llm.config.__dict__.copy()
llava_config_dict.update(
dict(
image_aspect_ratio='pad',
mm_hidden_size=visual_encoder.config.hidden_size,
mm_projector_type=f'mlp{self.projector_depth}x_gelu',
mm_use_im_patch_token=False,
mm_use_im_start_end=False,
mm_vision_select_feature='patch',
mm_vision_select_layer=self.visual_select_layer,
mm_vision_tower=visual_encoder.config.name_or_path,
unfreeze_mm_vision_tower=need_visual_encoder,
model_type='llava',
use_cache=True,
use_mm_proj=True))
llava_config = LlavaConfig(**llava_config_dict)
with init_empty_weights():
with warnings.catch_warnings():
warnings.filterwarnings(
'ignore', message='.*non-meta.*', category=UserWarning)
model = LlavaLlamaForCausalLM(llava_config)
model.load_state_dict(state_dict, strict=True, assign=True)
# save
print_log(f'Saving to {save_dir}', 'current')
model.save_pretrained(save_dir, **save_pretrained_kwargs)
image_processor.save_pretrained(save_dir, **save_pretrained_kwargs)
tokenizer.save_pretrained(save_dir, **save_pretrained_kwargs)