|
|
|
|
|
import math |
|
|
import os.path as osp |
|
|
import warnings |
|
|
from collections import OrderedDict |
|
|
import os |
|
|
from safetensors.torch import load_file, save_file |
|
|
|
|
|
import torch |
|
|
import torch.distributed as dist |
|
|
import torch.nn as nn |
|
|
from accelerate import init_empty_weights |
|
|
from mmengine import print_log |
|
|
from mmengine.config import Config, ConfigDict |
|
|
from mmengine.model import BaseModel |
|
|
from peft import get_peft_model, prepare_model_for_kbit_training |
|
|
from transformers import (AddedToken, AutoConfig, CLIPImageProcessor, |
|
|
CLIPVisionModel, LlamaForCausalLM, |
|
|
LlamaTokenizerFast, LlavaConfig, |
|
|
LlavaForConditionalGeneration, LlavaProcessor) |
|
|
from transformers.integrations import is_deepspeed_zero3_enabled |
|
|
|
|
|
from xtuner.registry import BUILDER |
|
|
from xtuner.utils import DEFAULT_IMAGE_TOKEN |
|
|
from .modules import ProjectorConfig, ProjectorModel, dispatch_modules |
|
|
from .modules.dispatch import SUPPORT_FLASH1, SUPPORT_FLASH2 |
|
|
from .utils import (LoadWoInit, find_all_linear_names, |
|
|
get_peft_model_state_dict, guess_load_checkpoint, |
|
|
make_inputs_require_grad, |
|
|
prepare_inputs_labels_for_multimodal, traverse_dict) |
|
|
|
|
|
import torch.nn.functional as F |
|
|
|
|
|
def convert_state_dict_to_hf(state_dict, mapping): |
|
|
new_state_dict = {} |
|
|
for key, value in state_dict.items(): |
|
|
if key.endswith('.inv_freq'): |
|
|
continue |
|
|
for key_to_modify, new_key in mapping.items(): |
|
|
if key_to_modify in key: |
|
|
key = key.replace(key_to_modify, new_key) |
|
|
new_state_dict[key] = value |
|
|
return new_state_dict |
|
|
|
|
|
class AdaptiveAvgPool1dLayer(nn.Module): |
|
|
""" |
|
|
自适应平均池化层(沿序列维 L),带输入/输出 LayerNorm,并在大 L 时切换为线性插值, |
|
|
避免 CUDA AdaptiveAvgPool 的 sharedMem 限制导致的报错。 |
|
|
|
|
|
期望输入:x ∈ [B, H, L] |
|
|
- 先在 [B, L, H] 上做输入层归一化(LayerNorm(H))。 |
|
|
- 对序列维 L 做池化/插值到 output_size。 |
|
|
- 再在 [B, L_out, H] 上做输出层归一化。 |
|
|
|
|
|
参数: |
|
|
output_size (int): 池化后的 token 数 L_out。 |
|
|
hidden_size (int): 通道维 H 的大小(用于 LayerNorm 维度)。 |
|
|
eps (float): LayerNorm eps。 |
|
|
affine (bool): LayerNorm 是否带缩放平移参数。 |
|
|
impl (str): 'auto' | 'pool' | 'interp'。auto 根据长度阈值自动切换。 |
|
|
switch_threshold (int): 当 L >= 该阈值且 impl='auto' 时使用插值。 |
|
|
pool_in_fp32 (bool): 池化/插值内部提升到 FP32 计算以增强数稳。 |
|
|
""" |
|
|
def __init__(self, output_size: int, hidden_size: int, eps: float = 1e-5, affine: bool = True, |
|
|
impl: str = 'auto', switch_threshold: int = 8192, pool_in_fp32: bool = True): |
|
|
super().__init__() |
|
|
if output_size <= 0: |
|
|
raise ValueError("output_size must be positive") |
|
|
if hidden_size <= 0: |
|
|
raise ValueError("hidden_size must be positive") |
|
|
if impl not in ('auto', 'pool', 'interp'): |
|
|
raise ValueError("impl must be one of {'auto','pool','interp'}") |
|
|
self.output_size = int(output_size) |
|
|
self.hidden_size = int(hidden_size) |
|
|
self.impl = impl |
|
|
self.switch_threshold = int(switch_threshold) |
|
|
self.pool_in_fp32 = bool(pool_in_fp32) |
|
|
self.in_norm = nn.LayerNorm(hidden_size, eps=eps, elementwise_affine=affine) |
|
|
self.out_norm = nn.LayerNorm(hidden_size, eps=eps, elementwise_affine=affine) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
if x.dim() != 3: |
|
|
raise ValueError(f"AdaptiveAvgPool1dLayer expects 3D tensor [B,H,L], got {tuple(x.shape)}") |
|
|
B, H, L = x.shape |
|
|
if H != self.hidden_size: |
|
|
raise ValueError(f"Channel size mismatch: got H={H}, expected {self.hidden_size}") |
|
|
|
|
|
|
|
|
x = x.transpose(1, 2).contiguous() |
|
|
x = self.in_norm(x) |
|
|
|
|
|
x = x.transpose(1, 2).contiguous() |
|
|
|
|
|
|
|
|
use_interp = (self.impl == 'interp') or (self.impl == 'auto' and L >= self.switch_threshold) |
|
|
orig_dtype = x.dtype |
|
|
if self.pool_in_fp32 and x.dtype in (torch.float16, torch.bfloat16): |
|
|
x = x.float() |
|
|
if use_interp: |
|
|
|
|
|
x = F.interpolate(x, size=self.output_size, mode='linear', align_corners=False) |
|
|
else: |
|
|
x = F.adaptive_avg_pool1d(x.contiguous(), self.output_size) |
|
|
x = x.to(orig_dtype) |
|
|
|
|
|
|
|
|
x = x.transpose(1, 2).contiguous() |
|
|
x = self.out_norm(x) |
|
|
x = x.transpose(1, 2).contiguous() |
|
|
return x |
|
|
|
|
|
class LLaVAModel(BaseModel): |
|
|
|
|
|
def __init__(self, |
|
|
llm, |
|
|
freeze_llm=True, |
|
|
visual_select_layer=-2, |
|
|
pretrained_pth=None, |
|
|
projector_depth=2, |
|
|
llm_lora=None, |
|
|
visual_encoder_lora=None, |
|
|
use_activation_checkpointing=True, |
|
|
max_position_embeddings=None, |
|
|
hidden_size=512, |
|
|
train_stage='2', |
|
|
|
|
|
projector_pth=None, |
|
|
|
|
|
use_projector_pool = False, |
|
|
projector_pool_out_tokens = 1024, |
|
|
projector_pool_pth = None, |
|
|
projector_pool_ln_eps = 1e-6, |
|
|
projector_pool_ln_affine = True, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.freeze_llm = freeze_llm |
|
|
self.freeze_visual_encoder = True |
|
|
if train_stage == '1': |
|
|
print('train_stage == 1') |
|
|
self.freeze_llm = True |
|
|
elif train_stage == '2': |
|
|
print('train_stage == 2') |
|
|
self.freeze_llm = False |
|
|
|
|
|
with LoadWoInit(): |
|
|
if isinstance(llm, dict): |
|
|
llm = self._dispatch_lm_model_cfg(llm, max_position_embeddings) |
|
|
|
|
|
self.llm = self._build_from_cfg_or_module(llm) |
|
|
|
|
|
self.llm.config.use_cache = False |
|
|
dispatch_modules(self.llm) |
|
|
|
|
|
self.projector_depth = projector_depth |
|
|
|
|
|
projector_config = ProjectorConfig( |
|
|
visual_hidden_size=hidden_size, |
|
|
llm_hidden_size=self.llm.config.hidden_size, |
|
|
depth=self.projector_depth) |
|
|
|
|
|
self.projector = ProjectorModel(projector_config).to( |
|
|
self.llm.dtype) |
|
|
|
|
|
self.use_projector_pool = use_projector_pool |
|
|
if self.use_projector_pool: |
|
|
hs = int(self.llm.config.hidden_size) |
|
|
self.projector_pool = AdaptiveAvgPool1dLayer( |
|
|
output_size=int(projector_pool_out_tokens), |
|
|
hidden_size=hs, |
|
|
eps=float(projector_pool_ln_eps), |
|
|
affine=bool(projector_pool_ln_affine), |
|
|
impl= 'auto', |
|
|
switch_threshold= 10240, |
|
|
pool_in_fp32= True, |
|
|
) |
|
|
|
|
|
|
|
|
if self.freeze_llm: |
|
|
print('freeze_llm') |
|
|
self.llm.requires_grad_(False) |
|
|
|
|
|
if use_activation_checkpointing: |
|
|
|
|
|
if hasattr(self.llm, 'enable_input_require_grads'): |
|
|
self.llm.enable_input_require_grads() |
|
|
else: |
|
|
self.llm.get_input_embeddings().register_forward_hook( |
|
|
make_inputs_require_grad) |
|
|
self.projector.enable_input_require_grads() |
|
|
|
|
|
|
|
|
|
|
|
self.gradient_checkpointing_enable() |
|
|
|
|
|
self.use_llm_lora = None |
|
|
self.use_visual_encoder_lora = None |
|
|
|
|
|
if self.use_llm_lora: |
|
|
self._prepare_llm_for_lora(llm_lora, use_activation_checkpointing) |
|
|
|
|
|
if projector_pth is not None: |
|
|
print_log(f"Loading projector from {projector_pth}", "current") |
|
|
proj_sd = load_file(projector_pth, device="cpu") |
|
|
|
|
|
self.projector.load_state_dict(proj_sd, strict=False) |
|
|
self.projector.to(self.llm.dtype) |
|
|
|
|
|
if pretrained_pth is not None: |
|
|
pretrained_state_dict = guess_load_checkpoint(pretrained_pth) |
|
|
self.load_state_dict(pretrained_state_dict, strict=False) |
|
|
print_log(f'Load pretrained weight from {pretrained_pth}', |
|
|
'current') |
|
|
|
|
|
self.visual_select_layer = visual_select_layer |
|
|
|
|
|
self._is_init = True |
|
|
self.is_first_iter = True |
|
|
|
|
|
def _parse_lora_config(self, lora_config): |
|
|
if isinstance(lora_config, dict) or isinstance( |
|
|
lora_config, Config) or isinstance(lora_config, ConfigDict): |
|
|
lora_config = BUILDER.build(lora_config) |
|
|
return lora_config |
|
|
|
|
|
def _prepare_llm_for_lora(self, |
|
|
lora_config, |
|
|
use_activation_checkpointing=True): |
|
|
lora_config = self._parse_lora_config(lora_config) |
|
|
self.llm = prepare_model_for_kbit_training( |
|
|
self.llm, use_activation_checkpointing) |
|
|
if lora_config.target_modules is None: |
|
|
modules = find_all_linear_names(self.llm) |
|
|
lora_config.target_modules = modules |
|
|
self.llm = get_peft_model(self.llm, lora_config) |
|
|
|
|
|
def _prepare_visual_encoder_for_lora(self, |
|
|
lora_config, |
|
|
use_activation_checkpointing=True): |
|
|
lora_config = self._parse_lora_config(lora_config) |
|
|
if lora_config.target_modules is None: |
|
|
modules = find_all_linear_names(self.visual_encoder) |
|
|
lora_config.target_modules = modules |
|
|
self.visual_encoder = get_peft_model(self.visual_encoder, lora_config) |
|
|
|
|
|
def gradient_checkpointing_enable(self): |
|
|
self.activation_checkpointing_enable() |
|
|
|
|
|
def activation_checkpointing_enable(self): |
|
|
self.llm.gradient_checkpointing_enable() |
|
|
|
|
|
self.projector.gradient_checkpointing_enable() |
|
|
|
|
|
def gradient_checkpointing_disable(self): |
|
|
self.activation_checkpointing_disable() |
|
|
|
|
|
def activation_checkpointing_disable(self): |
|
|
self.llm.gradient_checkpointing_disable() |
|
|
|
|
|
self.projector.gradient_checkpointing_disable() |
|
|
|
|
|
def init_weights(self): |
|
|
pass |
|
|
|
|
|
def state_dict(self, *args, **kwargs): |
|
|
state_dict = super().state_dict(*args, **kwargs) |
|
|
to_return = OrderedDict() |
|
|
|
|
|
if self.use_visual_encoder_lora: |
|
|
to_return.update( |
|
|
get_peft_model_state_dict( |
|
|
self.visual_encoder, state_dict=state_dict)) |
|
|
elif not self.freeze_visual_encoder: |
|
|
to_return.update({ |
|
|
k: v |
|
|
for k, v in state_dict.items() if 'visual_encoder.' in k |
|
|
}) |
|
|
|
|
|
if self.use_llm_lora: |
|
|
to_return.update( |
|
|
get_peft_model_state_dict(self.llm, state_dict=state_dict)) |
|
|
elif not self.freeze_llm: |
|
|
to_return.update( |
|
|
{k: v |
|
|
for k, v in state_dict.items() if 'llm.' in k}) |
|
|
|
|
|
to_return.update( |
|
|
{k: v |
|
|
for k, v in state_dict.items() if 'projector.' in k}) |
|
|
|
|
|
to_return.update( |
|
|
{k: v |
|
|
for k, v in state_dict.items() if 'projector_pool.' in k}) |
|
|
return to_return |
|
|
|
|
|
@staticmethod |
|
|
def _prepare_for_long_context_training(cfg, llm_cfg, |
|
|
max_position_embeddings): |
|
|
|
|
|
orig_rope_scaling = getattr(llm_cfg, 'rope_scaling', None) |
|
|
if orig_rope_scaling is None: |
|
|
orig_rope_scaling = {'factor': 1} |
|
|
|
|
|
orig_rope_scaling_factor = orig_rope_scaling[ |
|
|
'factor'] if 'factor' in orig_rope_scaling.keys() else 1 |
|
|
orig_ctx_len = getattr(llm_cfg, 'max_position_embeddings', None) |
|
|
if orig_ctx_len: |
|
|
orig_ctx_len *= orig_rope_scaling_factor |
|
|
if max_position_embeddings > orig_ctx_len: |
|
|
scaling_factor = float( |
|
|
math.ceil(max_position_embeddings / orig_ctx_len)) |
|
|
llm_cfg.rope_scaling = { |
|
|
'type': 'linear', |
|
|
'factor': scaling_factor |
|
|
} |
|
|
|
|
|
|
|
|
llm_cfg.attn_implementation = 'flash_attention_2' |
|
|
cfg.config = llm_cfg |
|
|
|
|
|
return cfg, llm_cfg |
|
|
|
|
|
@staticmethod |
|
|
def _prepare_for_flash_attn(cfg, llm_cfg): |
|
|
cls_name = type(llm_cfg).__name__ |
|
|
SUPPORT_SDPA_ATTN = ('LlamaConfig', 'GemmaConfig', 'MistralConfig', |
|
|
'MixtralConfig', 'Qwen2Config', 'Qwen2MoeConfig', |
|
|
'Starcoder2Config', 'Starcoder2Config', |
|
|
'Phi3Config') |
|
|
SUPPORT_FLASH_ATTN2 = ('InternLM2Config', 'LlamaConfig', 'GemmaConfig', |
|
|
'MistralConfig', 'MixtralConfig', 'Qwen2Config', |
|
|
'Qwen2MoeConfig', 'Starcoder2Config', |
|
|
'Starcoder2Config', 'Phi3Config') |
|
|
|
|
|
torch_dtype = torch.bfloat16 if ( |
|
|
torch.cuda.is_available() and torch.cuda.is_bf16_supported()) \ |
|
|
else torch.float16 |
|
|
|
|
|
if getattr(cfg, 'attn_implementation', None) is not None: |
|
|
|
|
|
|
|
|
if cfg.attn_implementation == 'flash_attention_2': |
|
|
cfg.torch_dtype = torch_dtype |
|
|
elif SUPPORT_FLASH2 and cls_name in SUPPORT_FLASH_ATTN2: |
|
|
cfg.torch_dtype = torch_dtype |
|
|
cfg.attn_implementation = 'flash_attention_2' |
|
|
elif SUPPORT_FLASH1 and cls_name in SUPPORT_SDPA_ATTN: |
|
|
cfg.attn_implementation = 'sdpa' |
|
|
|
|
|
return cfg, llm_cfg |
|
|
|
|
|
@staticmethod |
|
|
def _prepare_for_qlora_zero3(cfg): |
|
|
if (not is_deepspeed_zero3_enabled()) or (not hasattr( |
|
|
cfg, 'quantization_config')): |
|
|
return cfg |
|
|
|
|
|
torch_dtype = torch.bfloat16 if ( |
|
|
torch.cuda.is_available() and torch.cuda.is_bf16_supported()) \ |
|
|
else torch.float16 |
|
|
|
|
|
cfg.torch_dtype = torch_dtype |
|
|
quantization_config = cfg.quantization_config |
|
|
quantization_config.bnb_4bit_compute_dtype = torch_dtype |
|
|
quantization_config.bnb_4bit_quant_storage = torch_dtype |
|
|
|
|
|
return cfg |
|
|
|
|
|
def _dispatch_lm_model_cfg(self, cfg, max_position_embeddings=None): |
|
|
cfg = self._prepare_for_qlora_zero3(cfg) |
|
|
pretrained_model_name_or_path = cfg.pretrained_model_name_or_path |
|
|
llm_cfg = AutoConfig.from_pretrained( |
|
|
pretrained_model_name_or_path, trust_remote_code=True) |
|
|
cfg, llm_cfg = self._prepare_for_flash_attn(cfg, llm_cfg) |
|
|
if max_position_embeddings is not None: |
|
|
cfg, llm_cfg = self._prepare_for_long_context_training( |
|
|
cfg, llm_cfg, max_position_embeddings) |
|
|
return cfg |
|
|
|
|
|
def _build_from_cfg_or_module(self, cfg_or_mod): |
|
|
if isinstance(cfg_or_mod, nn.Module): |
|
|
return cfg_or_mod |
|
|
elif isinstance(cfg_or_mod, dict): |
|
|
traverse_dict(cfg_or_mod) |
|
|
return BUILDER.build(cfg_or_mod) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
def forward(self, data, data_samples=None, mode='loss'): |
|
|
if self.is_first_iter: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.to(data['input_ids'].device) |
|
|
self.is_first_iter = False |
|
|
|
|
|
|
|
|
if 'pixel_values' in data: |
|
|
feat_to_proj = data['pixel_values'].to(self.llm.dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
feat_to_proj.requires_grad_(True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pixel_values = self.projector(feat_to_proj) |
|
|
|
|
|
|
|
|
if self.use_projector_pool: |
|
|
B, L, H = pixel_values.shape |
|
|
pv = pixel_values.transpose(1, 2) |
|
|
pv = self.projector_pool(pv) |
|
|
pixel_values = pv.transpose(1, 2).contiguous() |
|
|
|
|
|
data['pixel_values'] = pixel_values |
|
|
|
|
|
data.pop('coords', None) |
|
|
data = prepare_inputs_labels_for_multimodal(llm=self.llm, **data) |
|
|
|
|
|
if mode == 'loss': |
|
|
return self.compute_loss(data, data_samples) |
|
|
elif mode == 'predict': |
|
|
return self.predict(data, data_samples) |
|
|
elif mode == 'tensor': |
|
|
return self._forward(data, data_samples) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
def _forward(self, data, data_samples=None): |
|
|
outputs = self.llm(**data) |
|
|
return outputs |
|
|
|
|
|
def predict(self, data, data_samples=None): |
|
|
outputs = self.llm(**data) |
|
|
logits_dict = [{'logits': logits} for logits in outputs.logits] |
|
|
return logits_dict |
|
|
|
|
|
|
|
|
|
|
|
def compute_loss(self, data, data_samples=None): |
|
|
""" |
|
|
计算损失的修改版实现。 |
|
|
该版本通过计算批次中每个样本的平均损失来解决长短文本的梯度失衡问题, |
|
|
使得每个样本对总损失的贡献相等,无论其token长度如何。 |
|
|
""" |
|
|
|
|
|
if "labels" not in data: |
|
|
outputs = self.llm(**data) |
|
|
return {"loss": outputs.loss} |
|
|
|
|
|
|
|
|
labels = data.pop("labels") |
|
|
|
|
|
|
|
|
outputs = self.llm(**data) |
|
|
logits = outputs.logits |
|
|
|
|
|
|
|
|
if logits.shape[:-1] != labels.shape: |
|
|
raise ValueError( |
|
|
f"Logits and labels shape mismatch. Logits: {logits.shape}, Labels: {labels.shape}" |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
|
|
|
|
|
|
|
loss = F.cross_entropy( |
|
|
shift_logits.view(-1, shift_logits.size(-1)), |
|
|
shift_labels.view(-1), |
|
|
ignore_index=-100, |
|
|
reduction='none' |
|
|
) |
|
|
|
|
|
|
|
|
loss = loss.view(shift_logits.size(0), -1) |
|
|
|
|
|
|
|
|
|
|
|
num_tokens_per_sample = (shift_labels != -100).sum(dim=1) |
|
|
|
|
|
|
|
|
loss_per_sample = loss.sum(dim=1) |
|
|
|
|
|
|
|
|
valid_samples_mask = num_tokens_per_sample > 0 |
|
|
|
|
|
|
|
|
mean_loss_per_sample = torch.zeros_like(loss_per_sample) |
|
|
|
|
|
|
|
|
if valid_samples_mask.any(): |
|
|
mean_loss_per_sample[valid_samples_mask] = loss_per_sample[valid_samples_mask] / num_tokens_per_sample[valid_samples_mask] |
|
|
|
|
|
|
|
|
final_loss = mean_loss_per_sample.mean() |
|
|
|
|
|
return {"loss": final_loss} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __getattr__(self, name: str): |
|
|
try: |
|
|
return super().__getattr__(name) |
|
|
except AttributeError: |
|
|
return getattr(self.llm, name) |
|
|
|
|
|
def to_hf(self, |
|
|
cfg, |
|
|
save_dir, |
|
|
fp32=False, |
|
|
save_pretrained_kwargs={}, |
|
|
save_format='xtuner', |
|
|
**kwargs): |
|
|
if save_format == 'xtuner': |
|
|
self.to_xtuner_llava(cfg, save_dir, fp32, save_pretrained_kwargs) |
|
|
elif save_format == 'huggingface': |
|
|
self.to_huggingface_llava(cfg, save_dir, fp32, |
|
|
save_pretrained_kwargs) |
|
|
elif save_format == 'official': |
|
|
self.to_official_llava(cfg, save_dir, fp32, save_pretrained_kwargs) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
def to_xtuner_llava(self, |
|
|
cfg, |
|
|
save_dir, |
|
|
fp32=False, |
|
|
save_pretrained_kwargs={}): |
|
|
|
|
|
self.llm.config.use_cache = True |
|
|
if not fp32: |
|
|
print_log('Convert LLM to float16', 'current') |
|
|
self.llm.half() |
|
|
if self.use_llm_lora: |
|
|
llm_path = osp.join(save_dir, 'llm_adapter') |
|
|
print_log(f'Saving LLM adapter to {llm_path}', 'current') |
|
|
self.llm.save_pretrained(llm_path, **save_pretrained_kwargs) |
|
|
elif not self.freeze_llm: |
|
|
llm_path = save_dir |
|
|
print_log(f'Saving LLM tokenizer to {llm_path}', 'current') |
|
|
tokenizer = BUILDER.build(cfg.tokenizer) |
|
|
tokenizer.save_pretrained(llm_path, **save_pretrained_kwargs) |
|
|
print_log(f'Saving LLM to {llm_path}', 'current') |
|
|
self.llm.save_pretrained(llm_path, **save_pretrained_kwargs) |
|
|
self.llm.config.use_cache = False |
|
|
|
|
|
|
|
|
if self.use_visual_encoder_lora: |
|
|
visual_encoder_path = osp.join(save_dir, 'visual_encoder_adapter') |
|
|
print_log( |
|
|
f'Saving visual_encoder adapter to {visual_encoder_path}', |
|
|
'current') |
|
|
self.visual_encoder.save_pretrained(visual_encoder_path, |
|
|
**save_pretrained_kwargs) |
|
|
elif not self.freeze_visual_encoder: |
|
|
visual_encoder_path = osp.join(save_dir, 'visual_encoder') |
|
|
print_log( |
|
|
'Saving visual_encoder image_processor to' |
|
|
f'{visual_encoder_path}', 'current') |
|
|
image_processor = BUILDER.build(cfg.image_processor) |
|
|
image_processor.save_pretrained(visual_encoder_path, |
|
|
**save_pretrained_kwargs) |
|
|
print_log(f'Saving visual_encoder to {visual_encoder_path}', |
|
|
'current') |
|
|
self.visual_encoder.save_pretrained(visual_encoder_path, |
|
|
**save_pretrained_kwargs) |
|
|
|
|
|
|
|
|
projector_path = osp.join(save_dir, 'projector') |
|
|
print_log(f'Saving projector to {projector_path}', 'current') |
|
|
|
|
|
|
|
|
os.makedirs(projector_path, exist_ok=True) |
|
|
output_path = os.path.join(projector_path, 'projector.safetensors') |
|
|
save_file(self.projector.state_dict(), output_path) |
|
|
|
|
|
|
|
|
if self.use_projector_pool and getattr(self, 'projector_pool', None): |
|
|
projector_pool_path = osp.join(save_dir, 'projector_pool') |
|
|
print_log(f'Saving projector_pool to {projector_pool_path}', 'current') |
|
|
torch.save(self.projector_pool.state_dict(), projector_pool_path) |
|
|
|
|
|
def to_huggingface_llava(self, |
|
|
cfg, |
|
|
save_dir, |
|
|
fp32=False, |
|
|
save_pretrained_kwargs={}): |
|
|
|
|
|
LLM_MAPPING = { |
|
|
'model': 'language_model.model', |
|
|
'lm_head': 'language_model.lm_head', |
|
|
} |
|
|
VIT_MAPPING = { |
|
|
'vision_model': 'vision_tower.vision_model', |
|
|
} |
|
|
PROJECTOR_MAPPING = { |
|
|
'model.0': 'multi_modal_projector.linear_1', |
|
|
'model.2': 'multi_modal_projector.linear_2', |
|
|
} |
|
|
LONGNET_MAPPING = { |
|
|
'layers.0': 'LongNet_encoder.layers.0', |
|
|
'layers.1': 'LongNet_encoder.layers.1', |
|
|
'layer_norm': 'LongNet_encoder.layer_norm' |
|
|
} |
|
|
|
|
|
assert getattr(self.llm, 'hf_quantizer', None) is None, \ |
|
|
'This conversion format does not support quantized LLM.' |
|
|
|
|
|
|
|
|
llm = self.llm |
|
|
if self.use_llm_lora: |
|
|
llm = self.llm.merge_and_unload() |
|
|
llm.config.use_cache = True |
|
|
if not fp32: |
|
|
print_log('Convert LLM to float16', 'current') |
|
|
llm.half() |
|
|
|
|
|
assert isinstance(llm, LlamaForCausalLM), \ |
|
|
'This conversion format only supports LlamaForCausalLM.' |
|
|
llm_state_dict = llm.state_dict() |
|
|
llm_state_dict = convert_state_dict_to_hf(llm_state_dict, LLM_MAPPING) |
|
|
|
|
|
need_visual_encoder = (not self.freeze_visual_encoder |
|
|
or self.use_visual_encoder_lora) |
|
|
visual_encoder = self.visual_encoder |
|
|
if self.use_visual_encoder_lora: |
|
|
visual_encoder = self.visual_encoder.merge_and_unload() |
|
|
assert isinstance(visual_encoder, CLIPVisionModel),\ |
|
|
'This conversion format only supports CLIPVisionModel.' |
|
|
if need_visual_encoder: |
|
|
visual_encoder_state_dict = visual_encoder.state_dict() |
|
|
visual_encoder_state_dict = convert_state_dict_to_hf( |
|
|
visual_encoder_state_dict, VIT_MAPPING) |
|
|
else: |
|
|
visual_encoder_state_dict = {} |
|
|
|
|
|
projector_state_dict = self.projector.state_dict() |
|
|
projector_state_dict = convert_state_dict_to_hf( |
|
|
projector_state_dict, PROJECTOR_MAPPING) |
|
|
|
|
|
LongNet_encoder_state_dict = self.LongNet_encoder.state_dict() |
|
|
LongNet_encoder_state_dict = convert_state_dict_to_hf( |
|
|
LongNet_encoder_state_dict, LONGNET_MAPPING) |
|
|
|
|
|
state_dict = { |
|
|
**projector_state_dict, |
|
|
**llm_state_dict, |
|
|
**visual_encoder_state_dict, |
|
|
**LongNet_encoder_state_dict |
|
|
} |
|
|
|
|
|
|
|
|
text_config = llm.config |
|
|
vision_config = visual_encoder.config |
|
|
config = LlavaConfig( |
|
|
text_config=text_config, |
|
|
vision_config=vision_config, |
|
|
attn_implementation='eager') |
|
|
|
|
|
with init_empty_weights(): |
|
|
with warnings.catch_warnings(): |
|
|
warnings.filterwarnings( |
|
|
'ignore', message='.*non-meta.*', category=UserWarning) |
|
|
model = LlavaForConditionalGeneration(config) |
|
|
model.load_state_dict(state_dict, strict=True, assign=True) |
|
|
|
|
|
|
|
|
cfg.tokenizer.type = LlamaTokenizerFast.from_pretrained |
|
|
tokenizer = BUILDER.build(cfg.tokenizer) |
|
|
|
|
|
tokenizer.add_tokens( |
|
|
AddedToken(DEFAULT_IMAGE_TOKEN, special=True, normalized=False), |
|
|
special_tokens=True) |
|
|
tokenizer.add_special_tokens({'pad_token': '<pad>'}) |
|
|
|
|
|
image_processor = BUILDER.build(cfg.image_processor) |
|
|
assert isinstance(image_processor, CLIPImageProcessor),\ |
|
|
'This conversion format only supports CLIPImageProcessor.' |
|
|
|
|
|
processor = LlavaProcessor( |
|
|
tokenizer=tokenizer, image_processor=image_processor) |
|
|
|
|
|
|
|
|
pad_shape = 64 |
|
|
|
|
|
pre_expansion_embeddings = \ |
|
|
model.language_model.model.embed_tokens.weight.data |
|
|
mu = torch.mean(pre_expansion_embeddings, dim=0).float() |
|
|
n = pre_expansion_embeddings.size()[0] |
|
|
sigma = ((pre_expansion_embeddings - mu).T |
|
|
@ (pre_expansion_embeddings - mu)) / n |
|
|
dist = torch.distributions.multivariate_normal.MultivariateNormal( |
|
|
mu, covariance_matrix=1e-5 * sigma) |
|
|
|
|
|
|
|
|
ori_vocab_size = config.text_config.vocab_size |
|
|
tokenizer_vocab_size = tokenizer.encode('<pad>')[-1] |
|
|
added_token = tokenizer_vocab_size - ori_vocab_size |
|
|
|
|
|
if added_token > 0: |
|
|
model.resize_token_embeddings(ori_vocab_size + added_token, |
|
|
pad_shape) |
|
|
model.language_model.model.embed_tokens.weight.data[ |
|
|
ori_vocab_size:] = torch.stack( |
|
|
tuple( |
|
|
dist.sample() |
|
|
for _ in range(model.language_model.model.embed_tokens. |
|
|
weight.data[ori_vocab_size:].shape[0])), |
|
|
dim=0, |
|
|
) |
|
|
model.language_model.lm_head.weight.data[ |
|
|
ori_vocab_size:] = torch.stack( |
|
|
tuple(dist.sample() |
|
|
for _ in range(model.language_model.lm_head.weight. |
|
|
data[ori_vocab_size:].shape[0])), |
|
|
dim=0, |
|
|
) |
|
|
model.config.image_token_index = tokenizer.encode( |
|
|
DEFAULT_IMAGE_TOKEN)[-1] |
|
|
model.config.pad_token_id = tokenizer.encode('<pad>')[-1] |
|
|
|
|
|
|
|
|
print_log(f'Saving to {save_dir}', 'current') |
|
|
model.save_pretrained(save_dir, **save_pretrained_kwargs) |
|
|
processor.save_pretrained(save_dir, **save_pretrained_kwargs) |
|
|
|
|
|
def to_official_llava(self, |
|
|
cfg, |
|
|
save_dir, |
|
|
fp32=False, |
|
|
save_pretrained_kwargs={}): |
|
|
|
|
|
VIT_MAPPING = { |
|
|
'vision_model': 'model.vision_tower.vision_tower.vision_model', |
|
|
} |
|
|
PROJECTOR_MAPPING = { |
|
|
'model.0': 'model.mm_projector.0', |
|
|
'model.2': 'model.mm_projector.2', |
|
|
} |
|
|
LONGNET_MAPPING = { |
|
|
'layers.0': 'LongNet_encoder.layers.0', |
|
|
'layers.1': 'LongNet_encoder.layers.1', |
|
|
'layer_norm': 'LongNet_encoder.layer_norm' |
|
|
} |
|
|
|
|
|
try: |
|
|
from llava.model import LlavaConfig, LlavaLlamaForCausalLM |
|
|
except ImportError: |
|
|
raise ImportError( |
|
|
'Please install llava with ' |
|
|
'`pip install git+https://github.com/haotian-liu/LLaVA.git ' |
|
|
'--no-deps`.') |
|
|
|
|
|
assert getattr(self.llm, 'hf_quantizer', None) is None, \ |
|
|
'This conversion format does not support quantized LLM.' |
|
|
|
|
|
|
|
|
llm = self.llm |
|
|
if self.use_llm_lora: |
|
|
llm = self.llm.merge_and_unload() |
|
|
llm.config.use_cache = True |
|
|
if not fp32: |
|
|
print_log('Convert LLM to float16', 'current') |
|
|
llm.half() |
|
|
|
|
|
assert isinstance(llm, LlamaForCausalLM), \ |
|
|
'This conversion format only supports LlamaForCausalLM.' |
|
|
llm_state_dict = llm.state_dict() |
|
|
|
|
|
need_visual_encoder = (not self.freeze_visual_encoder |
|
|
or self.use_visual_encoder_lora) |
|
|
visual_encoder = self.visual_encoder |
|
|
if self.use_visual_encoder_lora: |
|
|
visual_encoder = self.visual_encoder.merge_and_unload() |
|
|
assert isinstance(visual_encoder, CLIPVisionModel),\ |
|
|
'This conversion format only supports CLIPVisionModel.' |
|
|
if need_visual_encoder: |
|
|
visual_encoder_state_dict = visual_encoder.state_dict() |
|
|
visual_encoder_state_dict = convert_state_dict_to_hf( |
|
|
visual_encoder_state_dict, VIT_MAPPING) |
|
|
else: |
|
|
visual_encoder_state_dict = {} |
|
|
|
|
|
projector_state_dict = self.projector.state_dict() |
|
|
projector_state_dict = convert_state_dict_to_hf( |
|
|
projector_state_dict, PROJECTOR_MAPPING) |
|
|
|
|
|
LongNet_encoder_state_dict = self.LongNet_encoder.state_dict() |
|
|
LongNet_encoder_state_dict = convert_state_dict_to_hf( |
|
|
LongNet_encoder_state_dict, LONGNET_MAPPING) |
|
|
|
|
|
state_dict = { |
|
|
**projector_state_dict, |
|
|
**llm_state_dict, |
|
|
**visual_encoder_state_dict, |
|
|
**LongNet_encoder_state_dict |
|
|
} |
|
|
|
|
|
|
|
|
tokenizer = BUILDER.build(cfg.tokenizer) |
|
|
image_processor = BUILDER.build(cfg.image_processor) |
|
|
assert isinstance(image_processor, CLIPImageProcessor),\ |
|
|
'This conversion format only supports CLIPImageProcessor.' |
|
|
|
|
|
llava_config_dict = llm.config.__dict__.copy() |
|
|
llava_config_dict.update( |
|
|
dict( |
|
|
image_aspect_ratio='pad', |
|
|
mm_hidden_size=visual_encoder.config.hidden_size, |
|
|
mm_projector_type=f'mlp{self.projector_depth}x_gelu', |
|
|
mm_use_im_patch_token=False, |
|
|
mm_use_im_start_end=False, |
|
|
mm_vision_select_feature='patch', |
|
|
mm_vision_select_layer=self.visual_select_layer, |
|
|
mm_vision_tower=visual_encoder.config.name_or_path, |
|
|
unfreeze_mm_vision_tower=need_visual_encoder, |
|
|
model_type='llava', |
|
|
use_cache=True, |
|
|
use_mm_proj=True)) |
|
|
|
|
|
llava_config = LlavaConfig(**llava_config_dict) |
|
|
|
|
|
with init_empty_weights(): |
|
|
with warnings.catch_warnings(): |
|
|
warnings.filterwarnings( |
|
|
'ignore', message='.*non-meta.*', category=UserWarning) |
|
|
model = LlavaLlamaForCausalLM(llava_config) |
|
|
|
|
|
model.load_state_dict(state_dict, strict=True, assign=True) |
|
|
|
|
|
|
|
|
print_log(f'Saving to {save_dir}', 'current') |
|
|
|
|
|
model.save_pretrained(save_dir, **save_pretrained_kwargs) |
|
|
image_processor.save_pretrained(save_dir, **save_pretrained_kwargs) |
|
|
tokenizer.save_pretrained(save_dir, **save_pretrained_kwargs) |