Datasets:
metadata
license: apache-2.0
language:
- id
tags:
- legal
- indonesia
- regulations
- knowledge-graph
- rag
task_categories:
- text-retrieval
- question-answering
size_categories:
- 100K<n<1M
Indonesian Legal RAG Processed Database
This repository contains a fully preprocessed Indonesian legal regulation database ready for RAG (Retrieval Augmented Generation) systems.
Dataset Information
- Total Records: 199,994
- Processing Date: 2025-08-23
- Embedding Model: Qwen/Qwen3-Embedding-0.6B
- Embedding Dimension: 1024
Files Description
Main Database
processed_legal_database.parquet- Complete preprocessed database with all featuresembeddings.npy- Pre-computed embeddings array for fast loading
Supporting Components
tfidf_components.pkl- TF-IDF vectorizer and matrix for keyword matchingknowledge_graph.json- Legal concept relationships and hierarchyconfig.json- Processing configuration and parametersprocessing_summary.json- Processing statistics and metadata
Utilities
database_loader.py- Helper class for easy database loading
Features Included
Each record contains:
- Basic Information: Regulation type, number, year, enacting body, content
- Authority Score: Hierarchical legal authority level (0-1)
- Temporal Score: Regulation currency/relevance (0-1)
- Legal Richness: Legal term density and complexity (0-1)
- Cross-Reference Strength: Inter-regulation connectivity (0-1)
- Completeness Score: Information completeness (0-1)
- Knowledge Graph Features: Entity extraction and concept relationships
- Pre-computed Embeddings: Ready-to-use vector representations
Usage
from database_loader import ProcessedLegalDatabaseLoader
# Load complete database
loader = ProcessedLegalDatabaseLoader(".", local_mode=True)
df, embeddings, tfidf, kg, config = loader.load_all()
# Ready for RAG system - no preprocessing needed!
Memory Requirements
- Database: ~1260MB
- Embeddings: ~781MB
- Total: ~2747MB
License
Please ensure compliance with Indonesian legal data usage regulations.