Datasets:
Update data_loader.py
Browse files- data_loader.py +138 -25
data_loader.py
CHANGED
|
@@ -1,3 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
class UCFCrimeDataset(Dataset):
|
| 3 |
"""Dataset class for loading UCF-Crime features with temporal annotations."""
|
|
@@ -6,48 +20,147 @@ class UCFCrimeDataset(Dataset):
|
|
| 6 |
self.hdf5_path = hdf5_path
|
| 7 |
self.transform = transform
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
|
|
|
| 12 |
if split is not None:
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def __len__(self):
|
| 22 |
-
return len(self.
|
| 23 |
|
| 24 |
def __getitem__(self, idx):
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
| 29 |
|
|
|
|
| 30 |
features = torch.from_numpy(features).float()
|
| 31 |
labels = torch.from_numpy(labels).float()
|
| 32 |
|
| 33 |
if self.transform:
|
| 34 |
features = self.transform(features)
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
return {
|
| 37 |
-
'video_id':
|
| 38 |
'features': features,
|
| 39 |
-
'labels': labels
|
|
|
|
|
|
|
| 40 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
|
|
|
| 1 |
+
from huggingface_hub import hf_hub_download
|
| 2 |
+
import h5py
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from torch.utils.data import Dataset, DataLoader
|
| 6 |
+
|
| 7 |
+
def download_and_load_dataset(repo_id, filename="ucf_crime_features_labeled.h5"):
|
| 8 |
+
"""Download the HDF5 file from Hugging Face and return the local path."""
|
| 9 |
+
hdf5_path = hf_hub_download(
|
| 10 |
+
repo_id=repo_id,
|
| 11 |
+
filename=filename,
|
| 12 |
+
repo_type="dataset"
|
| 13 |
+
)
|
| 14 |
+
return hdf5_path
|
| 15 |
|
| 16 |
class UCFCrimeDataset(Dataset):
|
| 17 |
"""Dataset class for loading UCF-Crime features with temporal annotations."""
|
|
|
|
| 20 |
self.hdf5_path = hdf5_path
|
| 21 |
self.transform = transform
|
| 22 |
|
| 23 |
+
# Open the HDF5 file
|
| 24 |
+
self.hdf5_file = h5py.File(hdf5_path, 'r')
|
| 25 |
+
|
| 26 |
+
# Build list of video paths (category/video_name)
|
| 27 |
+
self.video_paths = []
|
| 28 |
+
for category_name in self.hdf5_file.keys():
|
| 29 |
+
category_group = self.hdf5_file[category_name]
|
| 30 |
+
for video_name in category_group.keys():
|
| 31 |
+
video_path = f"{category_name}/{video_name}"
|
| 32 |
+
self.video_paths.append(video_path)
|
| 33 |
|
| 34 |
+
# Filter by split if specified
|
| 35 |
if split is not None:
|
| 36 |
+
filtered_paths = []
|
| 37 |
+
for video_path in self.video_paths:
|
| 38 |
+
video_group = self.hdf5_file[video_path]
|
| 39 |
+
video_split = video_group.attrs.get('split', 'Unknown')
|
| 40 |
+
|
| 41 |
+
# Handle bytes type
|
| 42 |
+
if isinstance(video_split, bytes):
|
| 43 |
+
video_split = video_split.decode('utf-8')
|
| 44 |
+
|
| 45 |
+
# Case-insensitive comparison
|
| 46 |
+
if video_split.lower() == split.lower():
|
| 47 |
+
filtered_paths.append(video_path)
|
| 48 |
+
|
| 49 |
+
self.video_paths = filtered_paths
|
| 50 |
+
print(f"Loaded {len(self.video_paths)} videos for split: {split}")
|
| 51 |
|
| 52 |
def __len__(self):
|
| 53 |
+
return len(self.video_paths)
|
| 54 |
|
| 55 |
def __getitem__(self, idx):
|
| 56 |
+
video_path = self.video_paths[idx]
|
| 57 |
+
video_group = self.hdf5_file[video_path]
|
| 58 |
+
|
| 59 |
+
features = np.array(video_group['features'])
|
| 60 |
+
labels = np.array(video_group['labels'])
|
| 61 |
|
| 62 |
+
# Convert to tensors
|
| 63 |
features = torch.from_numpy(features).float()
|
| 64 |
labels = torch.from_numpy(labels).float()
|
| 65 |
|
| 66 |
if self.transform:
|
| 67 |
features = self.transform(features)
|
| 68 |
|
| 69 |
+
# Get metadata
|
| 70 |
+
duration = video_group.attrs.get('duration', 0.0)
|
| 71 |
+
split = video_group.attrs.get('split', 'Unknown')
|
| 72 |
+
if isinstance(split, bytes):
|
| 73 |
+
split = split.decode('utf-8')
|
| 74 |
+
|
| 75 |
return {
|
| 76 |
+
'video_id': video_path,
|
| 77 |
'features': features,
|
| 78 |
+
'labels': labels,
|
| 79 |
+
'duration': duration,
|
| 80 |
+
'split': split
|
| 81 |
}
|
| 82 |
+
|
| 83 |
+
def close(self):
|
| 84 |
+
"""Close the HDF5 file."""
|
| 85 |
+
if self.hdf5_file:
|
| 86 |
+
self.hdf5_file.close()
|
| 87 |
+
|
| 88 |
+
def create_dataloaders_from_huggingface(repo_id, batch_size=16, num_workers=2):
|
| 89 |
+
"""Download dataset from Hugging Face and create dataloaders."""
|
| 90 |
+
|
| 91 |
+
# Download the HDF5 file
|
| 92 |
+
print(f"Downloading dataset from {repo_id}...")
|
| 93 |
+
hdf5_path = download_and_load_dataset(repo_id)
|
| 94 |
+
print(f"✓ Dataset downloaded to: {hdf5_path}")
|
| 95 |
+
|
| 96 |
+
# Create datasets
|
| 97 |
+
print("\nCreating datasets...")
|
| 98 |
+
train_dataset = UCFCrimeDataset(hdf5_path, split='Train')
|
| 99 |
+
val_dataset = UCFCrimeDataset(hdf5_path, split='Val')
|
| 100 |
+
test_dataset = UCFCrimeDataset(hdf5_path, split='Test')
|
| 101 |
+
|
| 102 |
+
# Create dataloaders
|
| 103 |
+
train_loader = DataLoader(
|
| 104 |
+
train_dataset,
|
| 105 |
+
batch_size=batch_size,
|
| 106 |
+
shuffle=True,
|
| 107 |
+
num_workers=num_workers,
|
| 108 |
+
pin_memory=True
|
| 109 |
+
)
|
| 110 |
+
val_loader = DataLoader(
|
| 111 |
+
val_dataset,
|
| 112 |
+
batch_size=batch_size,
|
| 113 |
+
shuffle=False,
|
| 114 |
+
num_workers=num_workers,
|
| 115 |
+
pin_memory=True
|
| 116 |
+
)
|
| 117 |
+
test_loader = DataLoader(
|
| 118 |
+
test_dataset,
|
| 119 |
+
batch_size=batch_size,
|
| 120 |
+
shuffle=False,
|
| 121 |
+
num_workers=num_workers,
|
| 122 |
+
pin_memory=True
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
print(f"\n{'='*60}")
|
| 126 |
+
print("Dataset Statistics:")
|
| 127 |
+
print(f"{'='*60}")
|
| 128 |
+
print(f" Training set: {len(train_dataset):>4} videos")
|
| 129 |
+
print(f" Validation set: {len(val_dataset):>4} videos")
|
| 130 |
+
print(f" Test set: {len(test_dataset):>4} videos")
|
| 131 |
+
print(f" Total: {len(train_dataset) + len(val_dataset) + len(test_dataset):>4} videos")
|
| 132 |
+
print(f"{'='*60}")
|
| 133 |
+
|
| 134 |
+
return train_loader, val_loader, test_loader, hdf5_path
|
| 135 |
|
| 136 |
+
if __name__ == "__main__":
|
| 137 |
+
repo_id = "Rahima411/ucf-anomaly-detection-mapped"
|
| 138 |
+
|
| 139 |
+
# Create dataloaders
|
| 140 |
+
train_loader, val_loader, test_loader, hdf5_path = create_dataloaders_from_huggingface(
|
| 141 |
+
repo_id=repo_id,
|
| 142 |
+
batch_size=16,
|
| 143 |
+
num_workers=2
|
| 144 |
+
)
|
| 145 |
|
| 146 |
+
# Test loading batches
|
| 147 |
+
print("\nLoading Data...")
|
| 148 |
+
print("-" * 60)
|
| 149 |
|
| 150 |
+
for split_name, loader in [("Train", train_loader), ("Val", val_loader), ("Test", test_loader)]:
|
| 151 |
+
print(f"\n{split_name} set - First batch:")
|
| 152 |
+
for batch in loader:
|
| 153 |
+
print(f" Batch size: {len(batch['video_id'])} videos")
|
| 154 |
+
print(f" Features shape: {batch['features'].shape}")
|
| 155 |
+
print(f" Labels shape: {batch['labels'].shape}")
|
| 156 |
+
print(f" Sample video IDs: {batch['video_id'][:3]}")
|
| 157 |
+
|
| 158 |
+
# Calculate anomaly statistics
|
| 159 |
+
labels_np = batch['labels'].numpy()
|
| 160 |
+
num_anomaly_frames = (labels_np == 1).sum()
|
| 161 |
+
total_frames = labels_np.size
|
| 162 |
+
anomaly_pct = 100 * num_anomaly_frames / total_frames if total_frames > 0 else 0
|
| 163 |
+
|
| 164 |
+
print(f" Anomaly frames: {num_anomaly_frames:,} / {total_frames:,} ({anomaly_pct:.2f}%)")
|
| 165 |
+
break # Only show first batch
|
| 166 |
|