question_id
int64
0
16.1k
db_id
stringclasses
259 values
dber_id
stringlengths
15
29
question
stringlengths
16
325
SQL
stringlengths
18
1.25k
tokens
listlengths
4
62
entities
listlengths
0
21
entity_to_token
listlengths
20
20
dber_tags
listlengths
4
62
6,873
retail_world
bird:train.json:6499
How many territories are there in the Eastern region?
SELECT COUNT(T1.RegionID) FROM Territories AS T1 INNER JOIN Region AS T2 ON T1.RegionID = T2.RegionID WHERE T2.RegionDescription = 'Eastern'
[ "How", "many", "territories", "are", "there", "in", "the", "Eastern", "region", "?" ]
[ { "id": 2, "type": "column", "value": "regiondescription" }, { "id": 0, "type": "table", "value": "territories" }, { "id": 4, "type": "column", "value": "regionid" }, { "id": 3, "type": "value", "value": "Eastern" }, { "id": 1, "type": "table", "value": "region" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 8 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 7 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "O", "O", "B-VALUE", "B-TABLE", "O" ]
8,938
app_store
bird:train.json:2526
Which apps have multiple genres and what is the total sentiment subjectivity of these apps?
SELECT SUM(T2.Sentiment_Subjectivity) FROM playstore AS T1 INNER JOIN user_reviews AS T2 ON T1.App = T2.App WHERE T1.Genres > 1
[ "Which", "apps", "have", "multiple", "genres", "and", "what", "is", "the", "total", "sentiment", "subjectivity", "of", "these", "apps", "?" ]
[ { "id": 4, "type": "column", "value": "sentiment_subjectivity" }, { "id": 1, "type": "table", "value": "user_reviews" }, { "id": 0, "type": "table", "value": "playstore" }, { "id": 2, "type": "column", "value": "genres" }, { "id": 5, "type": "column", "value": "app" }, { "id": 3, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 4 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 10, 11 ] }, { "entity_id": 5, "token_idxs": [ 1 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-COLUMN", "O", "O", "B-COLUMN", "O", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O", "O" ]
35
e_government
spider:train_spider.json:6333
Count the number of cities in the state of Colorado.
SELECT count(*) FROM addresses WHERE state_province_county = "Colorado"
[ "Count", "the", "number", "of", "cities", "in", "the", "state", "of", "Colorado", "." ]
[ { "id": 1, "type": "column", "value": "state_province_county" }, { "id": 0, "type": "table", "value": "addresses" }, { "id": 2, "type": "column", "value": "Colorado" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 7 ] }, { "entity_id": 2, "token_idxs": [ 9 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "O", "B-COLUMN", "O", "B-COLUMN", "O" ]
14,293
department_store
spider:train_spider.json:4748
What is the code of the product type with an average price higher than the average price of all products?
SELECT product_type_code FROM products GROUP BY product_type_code HAVING avg(product_price) > (SELECT avg(product_price) FROM products)
[ "What", "is", "the", "code", "of", "the", "product", "type", "with", "an", "average", "price", "higher", "than", "the", "average", "price", "of", "all", "products", "?" ]
[ { "id": 1, "type": "column", "value": "product_type_code" }, { "id": 2, "type": "column", "value": "product_price" }, { "id": 0, "type": "table", "value": "products" } ]
[ { "entity_id": 0, "token_idxs": [ 7 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 4 ] }, { "entity_id": 3, "token_idxs": [ 8 ] }, { "entity_id": 4, "token_idxs": [ 11 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
3,044
csu_1
spider:train_spider.json:2360
Find the names of the campus which has more faculties in 2002 than every campus in Orange county.
SELECT T1.campus FROM campuses AS T1 JOIN faculty AS T2 ON T1.id = T2.campus WHERE T2.year = 2002 AND faculty > (SELECT max(faculty) FROM campuses AS T1 JOIN faculty AS T2 ON T1.id = T2.campus WHERE T2.year = 2002 AND T1.county = "Orange")
[ "Find", "the", "names", "of", "the", "campus", "which", "has", "more", "faculties", "in", "2002", "than", "every", "campus", "in", "Orange", "county", "." ]
[ { "id": 1, "type": "table", "value": "campuses" }, { "id": 2, "type": "table", "value": "faculty" }, { "id": 6, "type": "column", "value": "faculty" }, { "id": 0, "type": "column", "value": "campus" }, { "id": 7, "type": "column", "value": "county" }, { "id": 8, "type": "column", "value": "Orange" }, { "id": 4, "type": "column", "value": "year" }, { "id": 5, "type": "value", "value": "2002" }, { "id": 3, "type": "column", "value": "id" } ]
[ { "entity_id": 0, "token_idxs": [ 5 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 3 ] }, { "entity_id": 3, "token_idxs": [ 6 ] }, { "entity_id": 4, "token_idxs": [ 10 ] }, { "entity_id": 5, "token_idxs": [ 14 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-TABLE", "O", "B-COLUMN", "B-COLUMN", "O", "O", "O", "B-COLUMN", "O", "O", "O", "B-VALUE", "O", "O", "O", "O" ]
14,764
beer_factory
bird:train.json:5295
What is the average cost of root beers purchased for more than 2 dollars and sold in bottles?
SELECT AVG(T2.PurchasePrice) FROM rootbeer AS T1 INNER JOIN `transaction` AS T2 ON T1.RootBeerID = T2.RootBeerID INNER JOIN rootbeerbrand AS T3 ON T1.BrandID = T3.BrandID WHERE T1.ContainerType = 'Bottle' AND T2.PurchasePrice > 2
[ "What", "is", "the", "average", "cost", "of", "root", "beers", "purchased", "for", "more", "than", "2", "dollars", "and", "sold", "in", "bottles", "?" ]
[ { "id": 0, "type": "table", "value": "rootbeerbrand" }, { "id": 1, "type": "column", "value": "purchaseprice" }, { "id": 5, "type": "column", "value": "containertype" }, { "id": 3, "type": "table", "value": "transaction" }, { "id": 8, "type": "column", "value": "rootbeerid" }, { "id": 2, "type": "table", "value": "rootbeer" }, { "id": 4, "type": "column", "value": "brandid" }, { "id": 6, "type": "value", "value": "Bottle" }, { "id": 7, "type": "value", "value": "2" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 8 ] }, { "entity_id": 2, "token_idxs": [ 6, 7 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 17 ] }, { "entity_id": 7, "token_idxs": [ 12 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "B-TABLE", "I-TABLE", "B-COLUMN", "O", "O", "O", "B-VALUE", "O", "O", "O", "O", "B-VALUE", "O" ]
7,579
thrombosis_prediction
bird:dev.json:1191
What percentage of male patients who first presented to the hospital in 1981 were diagnosed with BEHCET?
SELECT CAST(SUM(CASE WHEN Diagnosis = 'BEHCET' THEN 1 ELSE 0 END) AS REAL) * 100 / COUNT(ID) FROM Patient WHERE STRFTIME('%Y', `First Date`) = '1981' AND SEX = 'M'
[ "What", "percentage", "of", "male", "patients", "who", "first", "presented", "to", "the", "hospital", "in", "1981", "were", "diagnosed", "with", "BEHCET", "?" ]
[ { "id": 7, "type": "column", "value": "First Date" }, { "id": 10, "type": "column", "value": "diagnosis" }, { "id": 0, "type": "table", "value": "patient" }, { "id": 11, "type": "value", "value": "BEHCET" }, { "id": 1, "type": "value", "value": "1981" }, { "id": 2, "type": "column", "value": "sex" }, { "id": 4, "type": "value", "value": "100" }, { "id": 5, "type": "column", "value": "id" }, { "id": 6, "type": "value", "value": "%Y" }, { "id": 3, "type": "value", "value": "M" }, { "id": 8, "type": "value", "value": "0" }, { "id": 9, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 3, 4 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 10, 11 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O", "O", "O", "B-VALUE", "I-VALUE", "O", "O", "O", "O", "O", "O" ]
5,143
real_estate_rentals
bird:test.json:1461
Return the number of rooms with each different room size.
SELECT room_size , count(*) FROM Rooms GROUP BY room_size
[ "Return", "the", "number", "of", "rooms", "with", "each", "different", "room", "size", "." ]
[ { "id": 1, "type": "column", "value": "room_size" }, { "id": 0, "type": "table", "value": "rooms" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [ 8, 9 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O" ]
14,785
cs_semester
bird:train.json:892
Among the most popular professors, how many are females?
SELECT COUNT(prof_id) FROM prof WHERE gender = 'Female' AND popularity = ( SELECT MAX(popularity) FROM prof )
[ "Among", "the", "most", "popular", "professors", ",", "how", "many", "are", "females", "?" ]
[ { "id": 4, "type": "column", "value": "popularity" }, { "id": 1, "type": "column", "value": "prof_id" }, { "id": 2, "type": "column", "value": "gender" }, { "id": 3, "type": "value", "value": "Female" }, { "id": 0, "type": "table", "value": "prof" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 9 ] }, { "entity_id": 4, "token_idxs": [ 3 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "B-TABLE", "O", "O", "O", "O", "B-VALUE", "O" ]
9,459
club_1
spider:train_spider.json:4319
Compute the average age of the members in the club "Tennis Club".
SELECT avg(t3.age) FROM club AS t1 JOIN member_of_club AS t2 ON t1.clubid = t2.clubid JOIN student AS t3 ON t2.stuid = t3.stuid WHERE t1.clubname = "Tennis Club"
[ "Compute", "the", "average", "age", "of", "the", "members", "in", "the", "club", "\"", "Tennis", "Club", "\"", "." ]
[ { "id": 5, "type": "table", "value": "member_of_club" }, { "id": 2, "type": "column", "value": "Tennis Club" }, { "id": 1, "type": "column", "value": "clubname" }, { "id": 0, "type": "table", "value": "student" }, { "id": 7, "type": "column", "value": "clubid" }, { "id": 6, "type": "column", "value": "stuid" }, { "id": 4, "type": "table", "value": "club" }, { "id": 3, "type": "column", "value": "age" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 11 ] }, { "entity_id": 3, "token_idxs": [ 3 ] }, { "entity_id": 4, "token_idxs": [ 12 ] }, { "entity_id": 5, "token_idxs": [ 6, 7, 8 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 9 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "I-TABLE", "I-TABLE", "B-COLUMN", "O", "B-COLUMN", "B-TABLE", "O", "O" ]
3,450
retail_world
bird:train.json:6625
What are the highest salary earn by the the employee and what is his/her position in the company?
SELECT Salary, Title FROM Employees WHERE Salary = ( SELECT MAX(Salary) FROM Employees )
[ "What", "are", "the", "highest", "salary", "earn", "by", "the", "the", "employee", "and", "what", "is", "his", "/", "her", "position", "in", "the", "company", "?" ]
[ { "id": 0, "type": "table", "value": "employees" }, { "id": 1, "type": "column", "value": "salary" }, { "id": 2, "type": "column", "value": "title" } ]
[ { "entity_id": 0, "token_idxs": [ 9 ] }, { "entity_id": 1, "token_idxs": [ 4 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
14,468
dorm_1
spider:train_spider.json:5691
How many dorms have amenities?
SELECT count(DISTINCT dormid) FROM has_amenity
[ "How", "many", "dorms", "have", "amenities", "?" ]
[ { "id": 0, "type": "table", "value": "has_amenity" }, { "id": 1, "type": "column", "value": "dormid" } ]
[ { "entity_id": 0, "token_idxs": [ 3, 4 ] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "B-TABLE", "I-TABLE", "O" ]
14,833
talkingdata
bird:train.json:1165
Calculate the percentage of male users among all device users.
SELECT SUM(IIF(gender = 'M', 1, 0)) / COUNT(device_id) AS per FROM gender_age
[ "Calculate", "the", "percentage", "of", "male", "users", "among", "all", "device", "users", "." ]
[ { "id": 0, "type": "table", "value": "gender_age" }, { "id": 1, "type": "column", "value": "device_id" }, { "id": 4, "type": "column", "value": "gender" }, { "id": 2, "type": "value", "value": "1" }, { "id": 3, "type": "value", "value": "0" }, { "id": 5, "type": "value", "value": "M" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 8 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [ 4 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-VALUE", "O", "O", "O", "B-COLUMN", "O", "O" ]
11,787
student_club
bird:dev.json:1426
List the last name of members with a major in environmental engineering and include its department and college name.
SELECT T2.last_name, T1.department, T1.college FROM major AS T1 INNER JOIN member AS T2 ON T1.major_id = T2.link_to_major WHERE T2.position = 'Member' AND T1.major_name = 'Environmental Engineering'
[ "List", "the", "last", "name", "of", "members", "with", "a", "major", "in", "environmental", "engineering", "and", "include", "its", "department", "and", "college", "name", "." ]
[ { "id": 10, "type": "value", "value": "Environmental Engineering" }, { "id": 6, "type": "column", "value": "link_to_major" }, { "id": 1, "type": "column", "value": "department" }, { "id": 9, "type": "column", "value": "major_name" }, { "id": 0, "type": "column", "value": "last_name" }, { "id": 5, "type": "column", "value": "major_id" }, { "id": 7, "type": "column", "value": "position" }, { "id": 2, "type": "column", "value": "college" }, { "id": 4, "type": "table", "value": "member" }, { "id": 8, "type": "value", "value": "Member" }, { "id": 3, "type": "table", "value": "major" } ]
[ { "entity_id": 0, "token_idxs": [ 2, 3 ] }, { "entity_id": 1, "token_idxs": [ 15 ] }, { "entity_id": 2, "token_idxs": [ 17 ] }, { "entity_id": 3, "token_idxs": [ 8 ] }, { "entity_id": 4, "token_idxs": [ 5 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [ 18 ] }, { "entity_id": 10, "token_idxs": [ 10, 11 ] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "I-COLUMN", "O", "B-TABLE", "O", "O", "B-TABLE", "O", "B-VALUE", "I-VALUE", "O", "O", "O", "B-COLUMN", "O", "B-COLUMN", "B-COLUMN", "O" ]
2,615
codebase_community
bird:dev.json:659
How many tags have post count between 5,000 to 7,000?
SELECT COUNT(Id) FROM tags WHERE Count BETWEEN 5000 AND 7000
[ "How", "many", "tags", "have", "post", "count", "between", "5,000", "to", "7,000", "?" ]
[ { "id": 1, "type": "column", "value": "count" }, { "id": 0, "type": "table", "value": "tags" }, { "id": 2, "type": "value", "value": "5000" }, { "id": 3, "type": "value", "value": "7000" }, { "id": 4, "type": "column", "value": "id" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 5 ] }, { "entity_id": 2, "token_idxs": [ 7 ] }, { "entity_id": 3, "token_idxs": [ 9 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "O", "B-VALUE", "O", "B-VALUE", "O" ]
5,238
beer_factory
bird:train.json:5353
How many stars did Urijah Faber rate for Frostie?
SELECT T2.StarRating FROM customers AS T1 INNER JOIN rootbeerreview AS T2 ON T1.CustomerID = T2.CustomerID INNER JOIN rootbeerbrand AS T3 ON T2.BrandID = T3.BrandID WHERE T1.First = 'Urijah' AND T1.Last = 'Faber' AND T3.BrandName = 'Frostie'
[ "How", "many", "stars", "did", "Urijah", "Faber", "rate", "for", "Frostie", "?" ]
[ { "id": 3, "type": "table", "value": "rootbeerreview" }, { "id": 1, "type": "table", "value": "rootbeerbrand" }, { "id": 0, "type": "column", "value": "starrating" }, { "id": 11, "type": "column", "value": "customerid" }, { "id": 2, "type": "table", "value": "customers" }, { "id": 9, "type": "column", "value": "brandname" }, { "id": 4, "type": "column", "value": "brandid" }, { "id": 10, "type": "value", "value": "Frostie" }, { "id": 6, "type": "value", "value": "Urijah" }, { "id": 5, "type": "column", "value": "first" }, { "id": 8, "type": "value", "value": "Faber" }, { "id": 7, "type": "column", "value": "last" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 4 ] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [ 5 ] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [ 8 ] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-VALUE", "B-VALUE", "O", "O", "B-VALUE", "O" ]
14,156
public_review_platform
bird:train.json:4107
What is the most common type of compliments that a user has received from other users?
SELECT T2.compliment_type FROM Users_Compliments AS T1 INNER JOIN Compliments AS T2 ON T1.compliment_id = T2.compliment_id GROUP BY T2.compliment_type ORDER BY COUNT(T2.compliment_type) DESC LIMIT 1
[ "What", "is", "the", "most", "common", "type", "of", "compliments", "that", "a", "user", "has", "received", "from", "other", "users", "?" ]
[ { "id": 1, "type": "table", "value": "users_compliments" }, { "id": 0, "type": "column", "value": "compliment_type" }, { "id": 3, "type": "column", "value": "compliment_id" }, { "id": 2, "type": "table", "value": "compliments" } ]
[ { "entity_id": 0, "token_idxs": [ 5 ] }, { "entity_id": 1, "token_idxs": [ 10, 15 ] }, { "entity_id": 2, "token_idxs": [ 7 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "B-COLUMN", "O", "B-TABLE", "O", "O", "B-TABLE", "O", "O", "O", "O", "B-TABLE", "O" ]
7,305
university
bird:train.json:8047
How many universities had over 30000 students in 2011?
SELECT COUNT(*) FROM university_year WHERE year = 2011 AND num_students > 30000
[ "How", "many", "universities", "had", "over", "30000", "students", "in", "2011", "?" ]
[ { "id": 0, "type": "table", "value": "university_year" }, { "id": 3, "type": "column", "value": "num_students" }, { "id": 4, "type": "value", "value": "30000" }, { "id": 1, "type": "column", "value": "year" }, { "id": 2, "type": "value", "value": "2011" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 8 ] }, { "entity_id": 3, "token_idxs": [ 6 ] }, { "entity_id": 4, "token_idxs": [ 5 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "B-VALUE", "B-COLUMN", "O", "B-VALUE", "O" ]
14,960
cre_Doc_Tracking_DB
spider:train_spider.json:4194
Show the description for role name "Proof Reader".
SELECT role_description FROM ROLES WHERE role_name = "Proof Reader"
[ "Show", "the", "description", "for", "role", "name", "\"", "Proof", "Reader", "\"", "." ]
[ { "id": 1, "type": "column", "value": "role_description" }, { "id": 3, "type": "column", "value": "Proof Reader" }, { "id": 2, "type": "column", "value": "role_name" }, { "id": 0, "type": "table", "value": "roles" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 5 ] }, { "entity_id": 3, "token_idxs": [ 7, 8 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "B-TABLE", "B-COLUMN", "O", "B-COLUMN", "I-COLUMN", "O", "O" ]
8,856
menu
bird:train.json:5492
How many menus were created for steamship?
SELECT COUNT(*) FROM Menu WHERE venue = 'STEAMSHIP'
[ "How", "many", "menus", "were", "created", "for", "steamship", "?" ]
[ { "id": 2, "type": "value", "value": "STEAMSHIP" }, { "id": 1, "type": "column", "value": "venue" }, { "id": 0, "type": "table", "value": "menu" } ]
[ { "entity_id": 0, "token_idxs": [ 5 ] }, { "entity_id": 1, "token_idxs": [ 6 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "B-TABLE", "B-COLUMN", "O" ]
4,033
county_public_safety
spider:train_spider.json:2536
List the distinct police forces of counties whose location is not on east side.
SELECT DISTINCT Police_force FROM county_public_safety WHERE LOCATION != "East"
[ "List", "the", "distinct", "police", "forces", "of", "counties", "whose", "location", "is", "not", "on", "east", "side", "." ]
[ { "id": 0, "type": "table", "value": "county_public_safety" }, { "id": 1, "type": "column", "value": "police_force" }, { "id": 2, "type": "column", "value": "location" }, { "id": 3, "type": "column", "value": "East" } ]
[ { "entity_id": 0, "token_idxs": [ 11 ] }, { "entity_id": 1, "token_idxs": [ 3, 4 ] }, { "entity_id": 2, "token_idxs": [ 7, 8 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "B-TABLE", "O", "O", "O" ]
8,947
swimming
spider:train_spider.json:5610
Which country has both stadiums with capacity greater than 60000 and stadiums with capacity less than 50000?
SELECT country FROM stadium WHERE capacity > 60000 INTERSECT SELECT country FROM stadium WHERE capacity < 50000
[ "Which", "country", "has", "both", "stadiums", "with", "capacity", "greater", "than", "60000", "and", "stadiums", "with", "capacity", "less", "than", "50000", "?" ]
[ { "id": 2, "type": "column", "value": "capacity" }, { "id": 0, "type": "table", "value": "stadium" }, { "id": 1, "type": "column", "value": "country" }, { "id": 3, "type": "value", "value": "60000" }, { "id": 4, "type": "value", "value": "50000" } ]
[ { "entity_id": 0, "token_idxs": [ 11 ] }, { "entity_id": 1, "token_idxs": [ 1 ] }, { "entity_id": 2, "token_idxs": [ 6 ] }, { "entity_id": 3, "token_idxs": [ 9 ] }, { "entity_id": 4, "token_idxs": [ 16 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-COLUMN", "O", "O", "O", "O", "B-COLUMN", "O", "O", "B-VALUE", "O", "B-TABLE", "O", "O", "O", "O", "B-VALUE", "O" ]
2,417
university
bird:train.json:8056
Which country has the University of São Paulo?
SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.university_name = 'University of São Paulo'
[ "Which", "country", "has", "the", "University", "of", "São", "Paulo", "?" ]
[ { "id": 4, "type": "value", "value": "University of São Paulo" }, { "id": 3, "type": "column", "value": "university_name" }, { "id": 0, "type": "column", "value": "country_name" }, { "id": 1, "type": "table", "value": "university" }, { "id": 5, "type": "column", "value": "country_id" }, { "id": 2, "type": "table", "value": "country" }, { "id": 6, "type": "column", "value": "id" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 4 ] }, { "entity_id": 2, "token_idxs": [ 1 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 5, 6, 7 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-TABLE", "O", "O", "B-TABLE", "B-VALUE", "I-VALUE", "I-VALUE", "O" ]
15,448
university_rank
bird:test.json:1760
What are the names, cities, and states of all universities in alphabetical order (by name of the university).
SELECT university_name , city , state FROM University ORDER BY university_name
[ "What", "are", "the", "names", ",", "cities", ",", "and", "states", "of", "all", "universities", "in", "alphabetical", "order", "(", "by", "name", "of", "the", "university", ")", "." ]
[ { "id": 1, "type": "column", "value": "university_name" }, { "id": 0, "type": "table", "value": "university" }, { "id": 3, "type": "column", "value": "state" }, { "id": 2, "type": "column", "value": "city" } ]
[ { "entity_id": 0, "token_idxs": [ 11 ] }, { "entity_id": 1, "token_idxs": [ 3, 17, 20 ] }, { "entity_id": 2, "token_idxs": [ 5 ] }, { "entity_id": 3, "token_idxs": [ 8 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "B-COLUMN", "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "B-COLUMN", "O", "O", "B-COLUMN", "O", "O" ]
12,067
network_2
spider:train_spider.json:4446
Find the name of the person who has friends with age above 40 but not under age 30?
SELECT T1.name FROM Person AS T1 JOIN PersonFriend AS T2 ON T1.name = T2.name WHERE T2.friend IN (SELECT name FROM Person WHERE age > 40) EXCEPT SELECT T1.name FROM Person AS T1 JOIN PersonFriend AS T2 ON T1.name = T2.name WHERE T2.friend IN (SELECT name FROM Person WHERE age < 30)
[ "Find", "the", "name", "of", "the", "person", "who", "has", "friends", "with", "age", "above", "40", "but", "not", "under", "age", "30", "?" ]
[ { "id": 2, "type": "table", "value": "personfriend" }, { "id": 1, "type": "table", "value": "person" }, { "id": 3, "type": "column", "value": "friend" }, { "id": 0, "type": "column", "value": "name" }, { "id": 4, "type": "column", "value": "age" }, { "id": 5, "type": "value", "value": "40" }, { "id": 6, "type": "value", "value": "30" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 5 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 8 ] }, { "entity_id": 4, "token_idxs": [ 10, 16 ] }, { "entity_id": 5, "token_idxs": [ 12 ] }, { "entity_id": 6, "token_idxs": [ 17 ] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "O", "B-COLUMN", "O", "B-VALUE", "O", "O", "O", "B-COLUMN", "B-VALUE", "O" ]
1,160
toxicology
bird:dev.json:306
Which molecules have triple bonds and list all the elements they contain.
SELECT DISTINCT T1.molecule_id, T2.element FROM bond AS T1 INNER JOIN atom AS T2 ON T1.molecule_id = T2.molecule_id WHERE T1.bond_type = '#'
[ "Which", "molecules", "have", "triple", "bonds", "and", "list", "all", "the", "elements", "they", "contain", "." ]
[ { "id": 0, "type": "column", "value": "molecule_id" }, { "id": 4, "type": "column", "value": "bond_type" }, { "id": 1, "type": "column", "value": "element" }, { "id": 2, "type": "table", "value": "bond" }, { "id": 3, "type": "table", "value": "atom" }, { "id": 5, "type": "value", "value": "#" } ]
[ { "entity_id": 0, "token_idxs": [ 1 ] }, { "entity_id": 1, "token_idxs": [ 9 ] }, { "entity_id": 2, "token_idxs": [ 4 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "O", "O", "B-COLUMN", "O", "O", "O" ]
8,821
e_commerce
bird:test.json:52
Which product are listed in orders most frequently? List the id, product name and price.
SELECT T1.product_id , T1.product_name , T1.product_price FROM Products AS T1 JOIN Order_items AS T2 ON T1.product_id = T2.product_id GROUP BY T1.product_id ORDER BY count(*) DESC LIMIT 1
[ "Which", "product", "are", "listed", "in", "orders", "most", "frequently", "?", "List", "the", "i", "d", ",", "product", "name", "and", "price", "." ]
[ { "id": 2, "type": "column", "value": "product_price" }, { "id": 1, "type": "column", "value": "product_name" }, { "id": 4, "type": "table", "value": "order_items" }, { "id": 0, "type": "column", "value": "product_id" }, { "id": 3, "type": "table", "value": "products" } ]
[ { "entity_id": 0, "token_idxs": [ 1 ] }, { "entity_id": 1, "token_idxs": [ 15 ] }, { "entity_id": 2, "token_idxs": [ 2 ] }, { "entity_id": 3, "token_idxs": [ 14 ] }, { "entity_id": 4, "token_idxs": [ 5 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-COLUMN", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "B-TABLE", "B-COLUMN", "O", "O", "O" ]
9,485
simpson_episodes
bird:train.json:4185
How many crew have their own nickname? List their full name along with the nickname.
SELECT COUNT(name) FROM Person WHERE nickname IS NOT NULL;
[ "How", "many", "crew", "have", "their", "own", "nickname", "?", "List", "their", "full", "name", "along", "with", "the", "nickname", "." ]
[ { "id": 1, "type": "column", "value": "nickname" }, { "id": 0, "type": "table", "value": "person" }, { "id": 2, "type": "column", "value": "name" } ]
[ { "entity_id": 0, "token_idxs": [ 10 ] }, { "entity_id": 1, "token_idxs": [ 5, 6, 7 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "O" ]
8,540
bakery_1
bird:test.json:1519
How many goods are available for each food type?
SELECT count(*) , food FROM goods GROUP BY food
[ "How", "many", "goods", "are", "available", "for", "each", "food", "type", "?" ]
[ { "id": 0, "type": "table", "value": "goods" }, { "id": 1, "type": "column", "value": "food" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 7 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "O", "O", "B-COLUMN", "O", "O" ]
3,510
restaurant_1
spider:train_spider.json:2838
How many times has the student Linda Smith visited Subway?
SELECT count(*) FROM Student JOIN Visits_Restaurant ON Student.StuID = Visits_Restaurant.StuID JOIN Restaurant ON Visits_Restaurant.ResID = Restaurant.ResID WHERE Student.Fname = "Linda" AND Student.Lname = "Smith" AND Restaurant.ResName = "Subway";
[ "How", "many", "times", "has", "the", "student", "Linda", "Smith", "visited", "Subway", "?" ]
[ { "id": 2, "type": "table", "value": "visits_restaurant" }, { "id": 0, "type": "table", "value": "restaurant" }, { "id": 1, "type": "table", "value": "student" }, { "id": 8, "type": "column", "value": "resname" }, { "id": 9, "type": "column", "value": "Subway" }, { "id": 3, "type": "column", "value": "resid" }, { "id": 4, "type": "column", "value": "fname" }, { "id": 5, "type": "column", "value": "Linda" }, { "id": 6, "type": "column", "value": "lname" }, { "id": 7, "type": "column", "value": "Smith" }, { "id": 10, "type": "column", "value": "stuid" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 5 ] }, { "entity_id": 2, "token_idxs": [ 8 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [ 6 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 7 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [ 9 ] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "B-TABLE", "B-COLUMN", "B-COLUMN", "B-TABLE", "B-COLUMN", "O" ]
13,809
bike_share_1
bird:train.json:9067
How many docks were left at the end station for trip ID4069?
SELECT SUM(T2.docks_available) FROM trip AS T1 INNER JOIN status AS T2 ON T2.station_id = T1.end_station_id WHERE T1.ID = 4069
[ "How", "many", "docks", "were", "left", "at", "the", "end", "station", "for", "trip", "ID4069", "?" ]
[ { "id": 4, "type": "column", "value": "docks_available" }, { "id": 6, "type": "column", "value": "end_station_id" }, { "id": 5, "type": "column", "value": "station_id" }, { "id": 1, "type": "table", "value": "status" }, { "id": 0, "type": "table", "value": "trip" }, { "id": 3, "type": "value", "value": "4069" }, { "id": 2, "type": "column", "value": "id" } ]
[ { "entity_id": 0, "token_idxs": [ 10 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 11 ] }, { "entity_id": 4, "token_idxs": [ 2 ] }, { "entity_id": 5, "token_idxs": [ 8 ] }, { "entity_id": 6, "token_idxs": [ 7 ] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "O", "O", "B-COLUMN", "B-COLUMN", "O", "B-TABLE", "B-VALUE", "O" ]
525
wrestler
spider:train_spider.json:1865
How many eliminations did each team have?
SELECT Team , COUNT(*) FROM elimination GROUP BY Team
[ "How", "many", "eliminations", "did", "each", "team", "have", "?" ]
[ { "id": 0, "type": "table", "value": "elimination" }, { "id": 1, "type": "column", "value": "team" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 5 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "O", "O" ]
14,625
company_employee
spider:train_spider.json:4107
Show names of companies and that of employees in descending order of number of years working for that employee.
SELECT T3.Name , T2.Name FROM employment AS T1 JOIN people AS T2 ON T1.People_ID = T2.People_ID JOIN company AS T3 ON T1.Company_ID = T3.Company_ID ORDER BY T1.Year_working
[ "Show", "names", "of", "companies", "and", "that", "of", "employees", "in", "descending", "order", "of", "number", "of", "years", "working", "for", "that", "employee", "." ]
[ { "id": 2, "type": "column", "value": "year_working" }, { "id": 3, "type": "table", "value": "employment" }, { "id": 5, "type": "column", "value": "company_id" }, { "id": 6, "type": "column", "value": "people_id" }, { "id": 1, "type": "table", "value": "company" }, { "id": 4, "type": "table", "value": "people" }, { "id": 0, "type": "column", "value": "name" } ]
[ { "entity_id": 0, "token_idxs": [ 1 ] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [ 14, 15 ] }, { "entity_id": 3, "token_idxs": [ 18 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-COLUMN", "O", "B-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "B-TABLE", "O" ]
3,502
trains
bird:train.json:696
Among the trains that run in the east direction, how many of them have at least one car in a non-regular shape?
SELECT SUM(CASE WHEN T1.shape IN ('bucket', 'elipse') THEN 1 ELSE 0 end)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'
[ "Among", "the", "trains", "that", "run", "in", "the", "east", "direction", ",", "how", "many", "of", "them", "have", "at", "least", "one", "car", "in", "a", "non", "-", "regular", "shape", "?" ]
[ { "id": 2, "type": "column", "value": "direction" }, { "id": 4, "type": "column", "value": "train_id" }, { "id": 1, "type": "table", "value": "trains" }, { "id": 9, "type": "value", "value": "bucket" }, { "id": 10, "type": "value", "value": "elipse" }, { "id": 8, "type": "column", "value": "shape" }, { "id": 0, "type": "table", "value": "cars" }, { "id": 3, "type": "value", "value": "east" }, { "id": 5, "type": "column", "value": "id" }, { "id": 6, "type": "value", "value": "0" }, { "id": 7, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [ 18 ] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 8 ] }, { "entity_id": 3, "token_idxs": [ 7 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [ 24 ] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "O", "O", "B-VALUE", "B-COLUMN", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "B-COLUMN", "O" ]
14,428
movielens
bird:train.json:2289
Among the films directed by directors who direct the best, how many of them have an average rating of over 3.5?
SELECT COUNT(*) FROM ( SELECT DISTINCT T2.movieid FROM directors AS T1 INNER JOIN movies2directors AS T2 ON T1.directorid = T2.directorid INNER JOIN u2base AS T3 ON T2.movieid = T3.movieid WHERE T1.d_quality = 5 GROUP BY T2.movieid HAVING AVG(T3.rating) > 3.5 ) AS T1
[ "Among", "the", "films", "directed", "by", "directors", "who", "direct", "the", "best", ",", "how", "many", "of", "them", "have", "an", "average", "rating", "of", "over", "3.5", "?" ]
[ { "id": 6, "type": "table", "value": "movies2directors" }, { "id": 8, "type": "column", "value": "directorid" }, { "id": 2, "type": "column", "value": "d_quality" }, { "id": 5, "type": "table", "value": "directors" }, { "id": 0, "type": "column", "value": "movieid" }, { "id": 1, "type": "table", "value": "u2base" }, { "id": 7, "type": "column", "value": "rating" }, { "id": 4, "type": "value", "value": "3.5" }, { "id": 3, "type": "value", "value": "5" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 21 ] }, { "entity_id": 5, "token_idxs": [ 5 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 18 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-COLUMN", "O", "O", "B-VALUE", "O" ]
853
school_finance
spider:train_spider.json:1888
What are the total and average enrollment of all schools?
SELECT sum(enrollment) , avg(enrollment) FROM school
[ "What", "are", "the", "total", "and", "average", "enrollment", "of", "all", "schools", "?" ]
[ { "id": 1, "type": "column", "value": "enrollment" }, { "id": 0, "type": "table", "value": "school" } ]
[ { "entity_id": 0, "token_idxs": [ 9 ] }, { "entity_id": 1, "token_idxs": [ 6 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "O" ]
12,834
codebase_community
bird:dev.json:586
Which user added a bounty amount of 50 to the post title mentioning variance?
SELECT T3.DisplayName, T1.Title FROM posts AS T1 INNER JOIN votes AS T2 ON T1.Id = T2.PostId INNER JOIN users AS T3 ON T3.Id = T2.UserId WHERE T2.BountyAmount = 50 AND T1.Title LIKE '%variance%'
[ "Which", "user", "added", "a", "bounty", "amount", "of", "50", "to", "the", "post", "title", "mentioning", "variance", "?" ]
[ { "id": 7, "type": "column", "value": "bountyamount" }, { "id": 0, "type": "column", "value": "displayname" }, { "id": 9, "type": "value", "value": "%variance%" }, { "id": 6, "type": "column", "value": "userid" }, { "id": 10, "type": "column", "value": "postid" }, { "id": 1, "type": "column", "value": "title" }, { "id": 2, "type": "table", "value": "users" }, { "id": 3, "type": "table", "value": "posts" }, { "id": 4, "type": "table", "value": "votes" }, { "id": 5, "type": "column", "value": "id" }, { "id": 8, "type": "value", "value": "50" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 5 ] }, { "entity_id": 7, "token_idxs": [ 7 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "B-COLUMN", "O", "B-COLUMN", "O", "O", "O", "O", "O", "O", "O" ]
653
retail_world
bird:train.json:6405
Of the 10 products with the highest unit price, identify by their ID the ones that have generated the least satisfaction.
SELECT ProductID FROM Products ORDER BY ReorderLevel ASC, UnitPrice DESC LIMIT 1
[ "Of", "the", "10", "products", "with", "the", "highest", "unit", "price", ",", "identify", "by", "their", "ID", "the", "ones", "that", "have", "generated", "the", "least", "satisfaction", "." ]
[ { "id": 2, "type": "column", "value": "reorderlevel" }, { "id": 1, "type": "column", "value": "productid" }, { "id": 3, "type": "column", "value": "unitprice" }, { "id": 0, "type": "table", "value": "products" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [ 13 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 7, 8 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-TABLE", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
15,514
chicago_crime
bird:train.json:8662
How many of the crimes that happened in the street have FBI title "Homicide 1st & 2nd Degree"?
SELECT SUM(CASE WHEN T2.location_description = 'STREET' THEN 1 ELSE 0 END) FROM FBI_Code AS T1 INNER JOIN Crime AS T2 ON T2.fbi_code_no = T1.fbi_code_no WHERE T1.title = 'Homicide 1st & 2nd Degree'
[ "How", "many", "of", "the", "crimes", "that", "happened", "in", "the", "street", "have", "FBI", "title", "\"", "Homicide", "1st", "&", "2nd", "Degree", "\"", "?" ]
[ { "id": 3, "type": "value", "value": "Homicide 1st & 2nd Degree" }, { "id": 7, "type": "column", "value": "location_description" }, { "id": 4, "type": "column", "value": "fbi_code_no" }, { "id": 0, "type": "table", "value": "fbi_code" }, { "id": 8, "type": "value", "value": "STREET" }, { "id": 1, "type": "table", "value": "crime" }, { "id": 2, "type": "column", "value": "title" }, { "id": 5, "type": "value", "value": "0" }, { "id": 6, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [ 11 ] }, { "entity_id": 1, "token_idxs": [ 4 ] }, { "entity_id": 2, "token_idxs": [ 12 ] }, { "entity_id": 3, "token_idxs": [ 14, 15, 16, 17, 18 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [ 9 ] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "B-VALUE", "O", "B-TABLE", "B-COLUMN", "O", "B-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "O", "O" ]
964
student_loan
bird:train.json:4385
Name all students enlisted in the foreign legion.
SELECT name FROM enlist WHERE organ = 'foreign_legion'
[ "Name", "all", "students", "enlisted", "in", "the", "foreign", "legion", "." ]
[ { "id": 3, "type": "value", "value": "foreign_legion" }, { "id": 0, "type": "table", "value": "enlist" }, { "id": 2, "type": "column", "value": "organ" }, { "id": 1, "type": "column", "value": "name" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [ 0 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 6, 7 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "B-VALUE", "I-VALUE", "O" ]
12,863
dorm_1
spider:train_spider.json:5700
Find the numbers of different majors and cities.
SELECT count(DISTINCT major) , count(DISTINCT city_code) FROM student
[ "Find", "the", "numbers", "of", "different", "majors", "and", "cities", "." ]
[ { "id": 2, "type": "column", "value": "city_code" }, { "id": 0, "type": "table", "value": "student" }, { "id": 1, "type": "column", "value": "major" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 5 ] }, { "entity_id": 2, "token_idxs": [ 7 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "B-COLUMN", "O", "B-COLUMN", "O" ]
9,577
tracking_grants_for_research
spider:train_spider.json:4350
How many staff does each project has? List the project id and the number in an ascending order.
SELECT T1.project_id , count(*) FROM Project_Staff AS T1 JOIN Projects AS T2 ON T1.project_id = T2.project_id GROUP BY T1.project_id ORDER BY count(*) ASC
[ "How", "many", "staff", "does", "each", "project", "has", "?", "List", "the", "project", "i", "d", "and", "the", "number", "in", "an", "ascending", "order", "." ]
[ { "id": 1, "type": "table", "value": "project_staff" }, { "id": 0, "type": "column", "value": "project_id" }, { "id": 2, "type": "table", "value": "projects" } ]
[ { "entity_id": 0, "token_idxs": [ 11, 12 ] }, { "entity_id": 1, "token_idxs": [ 2, 5 ] }, { "entity_id": 2, "token_idxs": [ 10 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "B-TABLE", "O", "O", "O", "O", "B-TABLE", "B-COLUMN", "I-COLUMN", "O", "O", "O", "O", "O", "O", "O", "O" ]
9,638
machine_repair
spider:train_spider.json:2242
What are the names of the technicians aged either 36 or 37?
SELECT Name FROM technician WHERE Age = 36 OR Age = 37
[ "What", "are", "the", "names", "of", "the", "technicians", "aged", "either", "36", "or", "37", "?" ]
[ { "id": 0, "type": "table", "value": "technician" }, { "id": 1, "type": "column", "value": "name" }, { "id": 2, "type": "column", "value": "age" }, { "id": 3, "type": "value", "value": "36" }, { "id": 4, "type": "value", "value": "37" } ]
[ { "entity_id": 0, "token_idxs": [ 6 ] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [ 7 ] }, { "entity_id": 3, "token_idxs": [ 9 ] }, { "entity_id": 4, "token_idxs": [ 11 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "B-COLUMN", "O", "B-VALUE", "O", "B-VALUE", "O" ]
11,302
talkingdata
bird:train.json:1106
List at least 15 phone models released under the OPPO brand.
SELECT device_model FROM phone_brand_device_model2 WHERE phone_brand = 'OPPO' LIMIT 15
[ "List", "at", "least", "15", "phone", "models", "released", "under", "the", "OPPO", "brand", "." ]
[ { "id": 0, "type": "table", "value": "phone_brand_device_model2" }, { "id": 1, "type": "column", "value": "device_model" }, { "id": 2, "type": "column", "value": "phone_brand" }, { "id": 3, "type": "value", "value": "OPPO" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 6 ] }, { "entity_id": 3, "token_idxs": [ 9 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [ 11 ] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "O", "O", "B-VALUE", "O", "O" ]
14,067
menu
bird:train.json:5542
How many menus sponsored by Krogs Fiske Restaurant were created in April 2015?
SELECT COUNT(*) FROM Menu WHERE date LIKE '2015-04%' AND sponsor = 'Krogs Fiskerestaurant'
[ "How", "many", "menus", "sponsored", "by", "Krogs", "Fiske", "Restaurant", "were", "created", "in", "April", "2015", "?" ]
[ { "id": 4, "type": "value", "value": "Krogs Fiskerestaurant" }, { "id": 2, "type": "value", "value": "2015-04%" }, { "id": 3, "type": "column", "value": "sponsor" }, { "id": 0, "type": "table", "value": "menu" }, { "id": 1, "type": "column", "value": "date" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 11, 12 ] }, { "entity_id": 3, "token_idxs": [ 3 ] }, { "entity_id": 4, "token_idxs": [ 5, 6, 7 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "B-COLUMN", "O", "B-VALUE", "I-VALUE", "I-VALUE", "O", "O", "O", "B-VALUE", "I-VALUE", "O" ]
4,065
video_games
bird:train.json:3322
How many games were sold on the DS platform on average in the 4 different regions?
SELECT SUM(T1.num_sales) * 100000 / 4 FROM region_sales AS T1 INNER JOIN game_platform AS T2 ON T1.game_platform_id = T2.id INNER JOIN platform AS T3 ON T2.platform_id = T3.id WHERE T3.platform_name = 'DS'
[ "How", "many", "games", "were", "sold", "on", "the", "DS", "platform", "on", "average", "in", "the", "4", "different", "regions", "?" ]
[ { "id": 9, "type": "column", "value": "game_platform_id" }, { "id": 1, "type": "column", "value": "platform_name" }, { "id": 5, "type": "table", "value": "game_platform" }, { "id": 4, "type": "table", "value": "region_sales" }, { "id": 6, "type": "column", "value": "platform_id" }, { "id": 10, "type": "column", "value": "num_sales" }, { "id": 0, "type": "table", "value": "platform" }, { "id": 8, "type": "value", "value": "100000" }, { "id": 2, "type": "value", "value": "DS" }, { "id": 7, "type": "column", "value": "id" }, { "id": 3, "type": "value", "value": "4" } ]
[ { "entity_id": 0, "token_idxs": [ 8 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 7 ] }, { "entity_id": 3, "token_idxs": [ 13 ] }, { "entity_id": 4, "token_idxs": [ 15 ] }, { "entity_id": 5, "token_idxs": [ 2 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "O", "O", "B-VALUE", "B-TABLE", "O", "O", "O", "O", "B-VALUE", "O", "B-TABLE", "O" ]
10,706
party_people
spider:train_spider.json:2045
Show the ministers and the time they took and left office, listed by the time they left office.
SELECT minister , took_office , left_office FROM party ORDER BY left_office
[ "Show", "the", "ministers", "and", "the", "time", "they", "took", "and", "left", "office", ",", "listed", "by", "the", "time", "they", "left", "office", "." ]
[ { "id": 2, "type": "column", "value": "took_office" }, { "id": 3, "type": "column", "value": "left_office" }, { "id": 1, "type": "column", "value": "minister" }, { "id": 0, "type": "table", "value": "party" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 10 ] }, { "entity_id": 3, "token_idxs": [ 17, 18 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "O", "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O" ]
6,201
baseball_1
spider:train_spider.json:3652
What are the first name and last name of the players whose death record is empty?
SELECT name_first , name_last FROM player WHERE death_year = '';
[ "What", "are", "the", "first", "name", "and", "last", "name", "of", "the", "players", "whose", "death", "record", "is", "empty", "?" ]
[ { "id": 1, "type": "column", "value": "name_first" }, { "id": 3, "type": "column", "value": "death_year" }, { "id": 2, "type": "column", "value": "name_last" }, { "id": 0, "type": "table", "value": "player" } ]
[ { "entity_id": 0, "token_idxs": [ 10 ] }, { "entity_id": 1, "token_idxs": [ 3, 4 ] }, { "entity_id": 2, "token_idxs": [ 6, 7 ] }, { "entity_id": 3, "token_idxs": [ 12 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "B-COLUMN", "I-COLUMN", "O", "O", "B-TABLE", "O", "B-COLUMN", "O", "O", "O", "O" ]
1,889
bakery_1
bird:test.json:1511
Find the receipt numbers where both Cake and Cookie were bought.
SELECT T1.receipt FROM items AS T1 JOIN goods AS T2 ON T1.item = T2.id WHERE T2.food = "Cake" INTERSECT SELECT T1.receipt FROM items AS T1 JOIN goods AS T2 ON T1.item = T2.id WHERE T2.food = "Cookie"
[ "Find", "the", "receipt", "numbers", "where", "both", "Cake", "and", "Cookie", "were", "bought", "." ]
[ { "id": 0, "type": "column", "value": "receipt" }, { "id": 5, "type": "column", "value": "Cookie" }, { "id": 1, "type": "table", "value": "items" }, { "id": 2, "type": "table", "value": "goods" }, { "id": 3, "type": "column", "value": "food" }, { "id": 4, "type": "column", "value": "Cake" }, { "id": 6, "type": "column", "value": "item" }, { "id": 7, "type": "column", "value": "id" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 6 ] }, { "entity_id": 5, "token_idxs": [ 8 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "O", "B-COLUMN", "O", "B-COLUMN", "O", "O", "O" ]
4,082
food_inspection
bird:train.json:8827
Describe the inspection types and violation descriptions under moderate risk category for ART's CAFÉ.
SELECT DISTINCT T2.type, T1.description FROM violations AS T1 INNER JOIN inspections AS T2 ON T1.business_id = T2.business_id INNER JOIN businesses AS T3 ON T2.business_id = T3.business_id WHERE T3.name = 'ART''S CAFÉ' AND T1.risk_category = 'Moderate Risk'
[ "Describe", "the", "inspection", "types", "and", "violation", "descriptions", "under", "moderate", "risk", "category", "for", "ART", "'s", "CAFÉ", "." ]
[ { "id": 8, "type": "column", "value": "risk_category" }, { "id": 9, "type": "value", "value": "Moderate Risk" }, { "id": 1, "type": "column", "value": "description" }, { "id": 4, "type": "table", "value": "inspections" }, { "id": 5, "type": "column", "value": "business_id" }, { "id": 2, "type": "table", "value": "businesses" }, { "id": 3, "type": "table", "value": "violations" }, { "id": 7, "type": "value", "value": "ART'S CAFÉ" }, { "id": 0, "type": "column", "value": "type" }, { "id": 6, "type": "column", "value": "name" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [ 6 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 5 ] }, { "entity_id": 4, "token_idxs": [ 2 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 12, 13, 14 ] }, { "entity_id": 8, "token_idxs": [ 10 ] }, { "entity_id": 9, "token_idxs": [ 8, 9 ] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "B-COLUMN", "O", "B-TABLE", "B-COLUMN", "O", "B-VALUE", "I-VALUE", "B-COLUMN", "O", "B-VALUE", "I-VALUE", "I-VALUE", "O" ]
15,922
cs_semester
bird:train.json:854
Which course is more difficult, Intro to BlockChain or Computer Network?
SELECT name FROM course WHERE name = 'Intro to BlockChain' OR name = 'Computer Network' ORDER BY diff DESC LIMIT 1
[ "Which", "course", "is", "more", "difficult", ",", "Intro", "to", "BlockChain", "or", "Computer", "Network", "?" ]
[ { "id": 3, "type": "value", "value": "Intro to BlockChain" }, { "id": 4, "type": "value", "value": "Computer Network" }, { "id": 0, "type": "table", "value": "course" }, { "id": 1, "type": "column", "value": "name" }, { "id": 2, "type": "column", "value": "diff" } ]
[ { "entity_id": 0, "token_idxs": [ 1 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 4 ] }, { "entity_id": 3, "token_idxs": [ 6, 7, 8 ] }, { "entity_id": 4, "token_idxs": [ 10, 11 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-TABLE", "O", "O", "B-COLUMN", "O", "B-VALUE", "I-VALUE", "I-VALUE", "O", "B-VALUE", "I-VALUE", "O" ]
14,369
movies_4
bird:train.json:488
Look for the movie title with the keyword of "angel".
SELECT T1.title FROM movie AS T1 INNER JOIN movie_keywords AS T2 ON T1.movie_id = T2.movie_id INNER JOIN keyword AS T3 ON T2.keyword_id = T3.keyword_id WHERE T3.keyword_name = 'angel'
[ "Look", "for", "the", "movie", "title", "with", "the", "keyword", "of", "\"", "angel", "\"", "." ]
[ { "id": 5, "type": "table", "value": "movie_keywords" }, { "id": 2, "type": "column", "value": "keyword_name" }, { "id": 6, "type": "column", "value": "keyword_id" }, { "id": 7, "type": "column", "value": "movie_id" }, { "id": 1, "type": "table", "value": "keyword" }, { "id": 0, "type": "column", "value": "title" }, { "id": 3, "type": "value", "value": "angel" }, { "id": 4, "type": "table", "value": "movie" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [ 7 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 10 ] }, { "entity_id": 4, "token_idxs": [ 3 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-TABLE", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "B-VALUE", "O", "O" ]
15,085
college_2
spider:train_spider.json:1350
How many different instructors have taught some course?
SELECT COUNT (DISTINCT id) FROM teaches
[ "How", "many", "different", "instructors", "have", "taught", "some", "course", "?" ]
[ { "id": 0, "type": "table", "value": "teaches" }, { "id": 1, "type": "column", "value": "id" } ]
[ { "entity_id": 0, "token_idxs": [ 5 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "B-TABLE", "O", "O", "O" ]
12,757
software_company
bird:train.json:8566
Among the female customers with an level of education of 3 and below, list their income.
SELECT INCOME_K FROM Demog WHERE GEOID IN ( SELECT GEOID FROM Customers WHERE EDUCATIONNUM < 3 AND SEX = 'Female' )
[ "Among", "the", "female", "customers", "with", "an", "level", "of", "education", "of", "3", "and", "below", ",", "list", "their", "income", "." ]
[ { "id": 4, "type": "column", "value": "educationnum" }, { "id": 3, "type": "table", "value": "customers" }, { "id": 1, "type": "column", "value": "income_k" }, { "id": 7, "type": "value", "value": "Female" }, { "id": 0, "type": "table", "value": "demog" }, { "id": 2, "type": "column", "value": "geoid" }, { "id": 6, "type": "column", "value": "sex" }, { "id": 5, "type": "value", "value": "3" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 16 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 3 ] }, { "entity_id": 4, "token_idxs": [ 8 ] }, { "entity_id": 5, "token_idxs": [ 10 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 2 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-VALUE", "B-TABLE", "O", "O", "O", "O", "B-COLUMN", "O", "B-VALUE", "O", "O", "O", "O", "O", "B-COLUMN", "O" ]
12,461
european_football_2
bird:dev.json:1103
What was the overall rating for Aaron Mooy on 2016/2/4?
SELECT t2.overall_rating FROM Player AS t1 INNER JOIN Player_Attributes AS t2 ON t1.player_api_id = t2.player_api_id WHERE SUBSTR(t2.`date`, 1, 10) = '2016-02-04' AND t1.player_name = 'Aaron Mooy'
[ "What", "was", "the", "overall", "rating", "for", "Aaron", "Mooy", "on", "2016/2/4", "?" ]
[ { "id": 2, "type": "table", "value": "player_attributes" }, { "id": 0, "type": "column", "value": "overall_rating" }, { "id": 3, "type": "column", "value": "player_api_id" }, { "id": 5, "type": "column", "value": "player_name" }, { "id": 4, "type": "value", "value": "2016-02-04" }, { "id": 6, "type": "value", "value": "Aaron Mooy" }, { "id": 1, "type": "table", "value": "player" }, { "id": 7, "type": "column", "value": "date" }, { "id": 9, "type": "value", "value": "10" }, { "id": 8, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 1 ] }, { "entity_id": 2, "token_idxs": [ 4 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [ 9 ] }, { "entity_id": 6, "token_idxs": [ 6 ] }, { "entity_id": 7, "token_idxs": [ 8 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-TABLE", "O", "O", "B-TABLE", "O", "B-VALUE", "O", "B-COLUMN", "B-COLUMN", "O" ]
14,196
school_player
spider:train_spider.json:4874
Find the team of the player of the highest age.
SELECT Team FROM player ORDER BY Age DESC LIMIT 1
[ "Find", "the", "team", "of", "the", "player", "of", "the", "highest", "age", "." ]
[ { "id": 0, "type": "table", "value": "player" }, { "id": 1, "type": "column", "value": "team" }, { "id": 2, "type": "column", "value": "age" } ]
[ { "entity_id": 0, "token_idxs": [ 5 ] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 9 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "O", "B-COLUMN", "O" ]
13,899
music_1
spider:train_spider.json:3575
List the name and gender for all artists who released songs in March.
SELECT T1.artist_name , T1.gender FROM artist AS T1 JOIN song AS T2 ON T1.artist_name = T2.artist_name WHERE T2.releasedate LIKE "%Mar%"
[ "List", "the", "name", "and", "gender", "for", "all", "artists", "who", "released", "songs", "in", "March", "." ]
[ { "id": 0, "type": "column", "value": "artist_name" }, { "id": 4, "type": "column", "value": "releasedate" }, { "id": 1, "type": "column", "value": "gender" }, { "id": 2, "type": "table", "value": "artist" }, { "id": 5, "type": "column", "value": "%Mar%" }, { "id": 3, "type": "table", "value": "song" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 4 ] }, { "entity_id": 2, "token_idxs": [ 7 ] }, { "entity_id": 3, "token_idxs": [ 10 ] }, { "entity_id": 4, "token_idxs": [ 9 ] }, { "entity_id": 5, "token_idxs": [ 12 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "B-COLUMN", "B-TABLE", "O", "B-COLUMN", "O" ]
14,114
genes
bird:train.json:2494
What are the functions of the pair of genes that have the lowest expression correlation score?a
SELECT T1.Function FROM Genes AS T1 INNER JOIN Interactions AS T2 ON T1.GeneID = T2.GeneID1 ORDER BY T2.Expression_Corr ASC LIMIT 1
[ "What", "are", "the", "functions", "of", "the", "pair", "of", "genes", "that", "have", "the", "lowest", "expression", "correlation", "score?a" ]
[ { "id": 3, "type": "column", "value": "expression_corr" }, { "id": 2, "type": "table", "value": "interactions" }, { "id": 0, "type": "column", "value": "function" }, { "id": 5, "type": "column", "value": "geneid1" }, { "id": 4, "type": "column", "value": "geneid" }, { "id": 1, "type": "table", "value": "genes" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [ 8 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 13, 14 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O" ]
1,584
soccer_2016
bird:train.json:1976
Who is the eldest player and where did he/she come from?
SELECT T1.Player_Name, T2.Country_Name FROM Player AS T1 INNER JOIN Country AS T2 ON T1.Country_Name = T2.Country_Id ORDER BY T1.DOB LIMIT 1
[ "Who", "is", "the", "eldest", "player", "and", "where", "did", "he", "/", "she", "come", "from", "?" ]
[ { "id": 1, "type": "column", "value": "country_name" }, { "id": 0, "type": "column", "value": "player_name" }, { "id": 5, "type": "column", "value": "country_id" }, { "id": 3, "type": "table", "value": "country" }, { "id": 2, "type": "table", "value": "player" }, { "id": 4, "type": "column", "value": "dob" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 4 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
3,652
language_corpus
bird:train.json:5727
Calculate the average number of repetitions in the pairs of words in which the first word id is number 34.
SELECT CAST(SUM(CASE WHEN w1st = 34 THEN 1 ELSE 0 END) AS REAL) / COUNT(w1st) FROM biwords
[ "Calculate", "the", "average", "number", "of", "repetitions", "in", "the", "pairs", "of", "words", "in", "which", "the", "first", "word", "i", "d", "is", "number", "34", "." ]
[ { "id": 0, "type": "table", "value": "biwords" }, { "id": 1, "type": "column", "value": "w1st" }, { "id": 4, "type": "value", "value": "34" }, { "id": 2, "type": "value", "value": "0" }, { "id": 3, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [ 10 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 20 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-VALUE", "O" ]
6,371
airline
bird:train.json:5872
Please list any three airports with their codes.
SELECT Code, Description FROM Airports LIMIT 3
[ "Please", "list", "any", "three", "airports", "with", "their", "codes", "." ]
[ { "id": 2, "type": "column", "value": "description" }, { "id": 0, "type": "table", "value": "airports" }, { "id": 1, "type": "column", "value": "code" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [ 7 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "O" ]
4,345
legislator
bird:train.json:4839
What is the party and state of the legislator that has an open secrets ID of N00003689 and thomas ID of 186?
SELECT T2.party, T2.state FROM current AS T1 INNER JOIN `current-terms` AS T2 ON T1.bioguide_id = T2.bioguide WHERE T1.opensecrets_id = 'N00003689' AND T1.thomas_id = 186 GROUP BY T2.party, T2.state
[ "What", "is", "the", "party", "and", "state", "of", "the", "legislator", "that", "has", "an", "open", "secrets", "ID", "of", "N00003689", "and", "thomas", "ID", "of", "186", "?" ]
[ { "id": 6, "type": "column", "value": "opensecrets_id" }, { "id": 3, "type": "table", "value": "current-terms" }, { "id": 4, "type": "column", "value": "bioguide_id" }, { "id": 7, "type": "value", "value": "N00003689" }, { "id": 8, "type": "column", "value": "thomas_id" }, { "id": 5, "type": "column", "value": "bioguide" }, { "id": 2, "type": "table", "value": "current" }, { "id": 0, "type": "column", "value": "party" }, { "id": 1, "type": "column", "value": "state" }, { "id": 9, "type": "value", "value": "186" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [ 5 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 12, 13, 14 ] }, { "entity_id": 7, "token_idxs": [ 16 ] }, { "entity_id": 8, "token_idxs": [ 18, 19 ] }, { "entity_id": 9, "token_idxs": [ 21 ] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "B-COLUMN", "O", "O", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "O", "B-VALUE", "O", "B-COLUMN", "I-COLUMN", "O", "B-VALUE", "O" ]
14,024
customer_complaints
spider:train_spider.json:5787
Return the description of the product called "Chocolate".
SELECT product_description FROM products WHERE product_name = "Chocolate"
[ "Return", "the", "description", "of", "the", "product", "called", "\"", "Chocolate", "\"", "." ]
[ { "id": 1, "type": "column", "value": "product_description" }, { "id": 2, "type": "column", "value": "product_name" }, { "id": 3, "type": "column", "value": "Chocolate" }, { "id": 0, "type": "table", "value": "products" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 1 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [ 3, 4, 5 ] }, { "entity_id": 6, "token_idxs": [ 7 ] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-COLUMN", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
11,216
formula_1
spider:train_spider.json:2217
Find the names of Japanese constructors that have once earned more than 5 points?
SELECT T1.name FROM constructors AS T1 JOIN constructorstandings AS T2 ON T1.constructorid = T2.constructorid WHERE T1.nationality = "Japanese" AND T2.points > 5
[ "Find", "the", "names", "of", "Japanese", "constructors", "that", "have", "once", "earned", "more", "than", "5", "points", "?" ]
[ { "id": 2, "type": "table", "value": "constructorstandings" }, { "id": 3, "type": "column", "value": "constructorid" }, { "id": 1, "type": "table", "value": "constructors" }, { "id": 4, "type": "column", "value": "nationality" }, { "id": 5, "type": "column", "value": "Japanese" }, { "id": 6, "type": "column", "value": "points" }, { "id": 0, "type": "column", "value": "name" }, { "id": 7, "type": "value", "value": "5" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 5 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [ 4 ] }, { "entity_id": 6, "token_idxs": [ 13 ] }, { "entity_id": 7, "token_idxs": [ 12 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "B-COLUMN", "B-TABLE", "O", "O", "O", "O", "O", "O", "B-VALUE", "B-COLUMN", "O" ]
1,638
beer_factory
bird:train.json:5267
What is the name of the brand of the beer with the shortest brewed history?
SELECT BrandName FROM rootbeerbrand ORDER BY FirstBrewedYear DESC LIMIT 1
[ "What", "is", "the", "name", "of", "the", "brand", "of", "the", "beer", "with", "the", "shortest", "brewed", "history", "?" ]
[ { "id": 2, "type": "column", "value": "firstbrewedyear" }, { "id": 0, "type": "table", "value": "rootbeerbrand" }, { "id": 1, "type": "column", "value": "brandname" } ]
[ { "entity_id": 0, "token_idxs": [ 11 ] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [ 5 ] }, { "entity_id": 3, "token_idxs": [ 8 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "B-COLUMN", "O", "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "O" ]
6,790
workshop_paper
spider:train_spider.json:5816
List the authors of submissions in ascending order of scores.
SELECT Author FROM submission ORDER BY Scores ASC
[ "List", "the", "authors", "of", "submissions", "in", "ascending", "order", "of", "scores", "." ]
[ { "id": 0, "type": "table", "value": "submission" }, { "id": 1, "type": "column", "value": "author" }, { "id": 2, "type": "column", "value": "scores" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 9 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "B-TABLE", "O", "O", "O", "O", "B-COLUMN", "O" ]
5,421
customers_and_products_contacts
spider:train_spider.json:5666
What are the name and phone of the customer with the most ordered product quantity?
SELECT T1.customer_name , T1.customer_phone FROM customers AS T1 JOIN customer_orders AS T2 ON T1.customer_id = T2.customer_id JOIN order_items AS T3 ON T3.order_id = T2.order_id GROUP BY T1.customer_id ORDER BY sum(T3.order_quantity) DESC LIMIT 1
[ "What", "are", "the", "name", "and", "phone", "of", "the", "customer", "with", "the", "most", "ordered", "product", "quantity", "?" ]
[ { "id": 5, "type": "table", "value": "customer_orders" }, { "id": 2, "type": "column", "value": "customer_phone" }, { "id": 7, "type": "column", "value": "order_quantity" }, { "id": 1, "type": "column", "value": "customer_name" }, { "id": 0, "type": "column", "value": "customer_id" }, { "id": 3, "type": "table", "value": "order_items" }, { "id": 4, "type": "table", "value": "customers" }, { "id": 6, "type": "column", "value": "order_id" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 5, 6, 7 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 8 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 12 ] }, { "entity_id": 7, "token_idxs": [ 14 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "B-TABLE", "O", "O", "O", "B-COLUMN", "O", "B-COLUMN", "O" ]
5,138
cre_Doc_and_collections
bird:test.json:684
What is the number of child documents for each parent document, and what are the ids of the parent documents?
SELECT T2.Document_Object_ID , count(*) FROM Document_Objects AS T1 JOIN Document_Objects AS T2 ON T1.Parent_Document_Object_ID = T2.Document_Object_ID GROUP BY T2.Document_Object_ID;
[ "What", "is", "the", "number", "of", "child", "documents", "for", "each", "parent", "document", ",", "and", "what", "are", "the", "ids", "of", "the", "parent", "documents", "?" ]
[ { "id": 2, "type": "column", "value": "parent_document_object_id" }, { "id": 0, "type": "column", "value": "document_object_id" }, { "id": 1, "type": "table", "value": "document_objects" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 6 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 9 ] }, { "entity_id": 4, "token_idxs": [ 11 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
10,958
election
spider:train_spider.json:2769
Find the parties associated with the delegates from district 1. Who served as governors of the parties?
SELECT T2.Governor FROM election AS T1 JOIN party AS T2 ON T1.Party = T2.Party_ID WHERE T1.District = 1
[ "Find", "the", "parties", "associated", "with", "the", "delegates", "from", "district", "1", ".", "Who", "served", "as", "governors", "of", "the", "parties", "?" ]
[ { "id": 0, "type": "column", "value": "governor" }, { "id": 1, "type": "table", "value": "election" }, { "id": 3, "type": "column", "value": "district" }, { "id": 6, "type": "column", "value": "party_id" }, { "id": 2, "type": "table", "value": "party" }, { "id": 5, "type": "column", "value": "party" }, { "id": 4, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [ 14 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 8 ] }, { "entity_id": 4, "token_idxs": [ 9 ] }, { "entity_id": 5, "token_idxs": [ 2 ] }, { "entity_id": 6, "token_idxs": [ 17 ] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "O", "O", "O", "B-COLUMN", "B-VALUE", "O", "O", "O", "O", "B-COLUMN", "O", "O", "B-COLUMN", "O" ]
7,144
match_season
spider:train_spider.json:1072
Show the season, the player, and the name of the country that player belongs to.
SELECT T2.Season , T2.Player , T1.Country_name FROM country AS T1 JOIN match_season AS T2 ON T1.Country_id = T2.Country
[ "Show", "the", "season", ",", "the", "player", ",", "and", "the", "name", "of", "the", "country", "that", "player", "belongs", "to", "." ]
[ { "id": 2, "type": "column", "value": "country_name" }, { "id": 4, "type": "table", "value": "match_season" }, { "id": 5, "type": "column", "value": "country_id" }, { "id": 3, "type": "table", "value": "country" }, { "id": 6, "type": "column", "value": "country" }, { "id": 0, "type": "column", "value": "season" }, { "id": 1, "type": "column", "value": "player" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 5 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 12 ] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "B-COLUMN", "O", "O", "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "O" ]
7,177
european_football_2
bird:dev.json:1114
What was the average overall rating for Marko Arnautovic from 2007/2/22 to 2016/4/21?
SELECT CAST(SUM(t2.overall_rating) AS REAL) / COUNT(t2.id) FROM Player AS t1 INNER JOIN Player_Attributes AS t2 ON t1.player_fifa_api_id = t2.player_fifa_api_id WHERE t1.player_name = 'Marko Arnautovic' AND SUBSTR(t2.`date`, 1, 10) BETWEEN '2007-02-22' AND '2016-04-21'
[ "What", "was", "the", "average", "overall", "rating", "for", "Marko", "Arnautovic", "from", "2007/2/22", "to", "2016/4/21", "?" ]
[ { "id": 2, "type": "column", "value": "player_fifa_api_id" }, { "id": 1, "type": "table", "value": "player_attributes" }, { "id": 4, "type": "value", "value": "Marko Arnautovic" }, { "id": 11, "type": "column", "value": "overall_rating" }, { "id": 3, "type": "column", "value": "player_name" }, { "id": 5, "type": "value", "value": "2007-02-22" }, { "id": 6, "type": "value", "value": "2016-04-21" }, { "id": 0, "type": "table", "value": "player" }, { "id": 8, "type": "column", "value": "date" }, { "id": 7, "type": "column", "value": "id" }, { "id": 10, "type": "value", "value": "10" }, { "id": 9, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 7, 8 ] }, { "entity_id": 5, "token_idxs": [ 10 ] }, { "entity_id": 6, "token_idxs": [ 12 ] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [ 4, 5 ] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "B-VALUE", "I-VALUE", "O", "B-VALUE", "O", "B-VALUE", "O" ]
7,206
customers_card_transactions
spider:train_spider.json:718
Return the id and full name of the customer who has the fewest accounts.
SELECT T1.customer_id , T2.customer_first_name , T2.customer_last_name FROM Customers_cards AS T1 JOIN Customers AS T2 ON T1.customer_id = T2.customer_id GROUP BY T1.customer_id ORDER BY count(*) ASC LIMIT 1
[ "Return", "the", "i", "d", "and", "full", "name", "of", "the", "customer", "who", "has", "the", "fewest", "accounts", "." ]
[ { "id": 1, "type": "column", "value": "customer_first_name" }, { "id": 2, "type": "column", "value": "customer_last_name" }, { "id": 3, "type": "table", "value": "customers_cards" }, { "id": 0, "type": "column", "value": "customer_id" }, { "id": 4, "type": "table", "value": "customers" } ]
[ { "entity_id": 0, "token_idxs": [ 2, 3 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 9 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "O" ]
15,627
headphone_store
bird:test.json:926
Find the headphone class that does not contain more than two headphones.
SELECT CLASS FROM headphone GROUP BY CLASS HAVING count(*) > 2
[ "Find", "the", "headphone", "class", "that", "does", "not", "contain", "more", "than", "two", "headphones", "." ]
[ { "id": 0, "type": "table", "value": "headphone" }, { "id": 1, "type": "column", "value": "class" }, { "id": 2, "type": "value", "value": "2" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [ 10 ] }, { "entity_id": 2, "token_idxs": [ 7 ] }, { "entity_id": 3, "token_idxs": [ 12 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [ 6 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-TABLE", "O", "O", "O", "B-VALUE", "O", "O", "B-COLUMN", "O", "O" ]
6,232
airline
bird:train.json:5854
How many flights departed on time on 8/1/2018?
SELECT COUNT(*) FROM Airlines WHERE FL_DATE = '2018/8/1' AND DEP_DELAY <= 0
[ "How", "many", "flights", "departed", "on", "time", "on", "8/1/2018", "?" ]
[ { "id": 3, "type": "column", "value": "dep_delay" }, { "id": 0, "type": "table", "value": "airlines" }, { "id": 2, "type": "value", "value": "2018/8/1" }, { "id": 1, "type": "column", "value": "fl_date" }, { "id": 4, "type": "value", "value": "0" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 7 ] }, { "entity_id": 3, "token_idxs": [ 3 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "B-COLUMN", "O", "O", "O", "B-VALUE", "O" ]
14,242
retail_world
bird:train.json:6652
Name the shipper which had the most shipments in first quarter of 1998.
SELECT T1.CompanyName FROM Shippers AS T1 INNER JOIN Orders AS T2 ON T1.ShipperID = T2.ShipVia WHERE STRFTIME('%Y', T2.ShippedDate) = '1998' GROUP BY T1.CompanyName ORDER BY COUNT(T2.OrderID) DESC LIMIT 1
[ "Name", "the", "shipper", "which", "had", "the", "most", "shipments", "in", "first", "quarter", "of", "1998", "." ]
[ { "id": 0, "type": "column", "value": "companyname" }, { "id": 7, "type": "column", "value": "shippeddate" }, { "id": 4, "type": "column", "value": "shipperid" }, { "id": 1, "type": "table", "value": "shippers" }, { "id": 5, "type": "column", "value": "shipvia" }, { "id": 8, "type": "column", "value": "orderid" }, { "id": 2, "type": "table", "value": "orders" }, { "id": 3, "type": "value", "value": "1998" }, { "id": 6, "type": "value", "value": "%Y" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 12 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-VALUE", "O" ]
2,607
college_2
spider:train_spider.json:1341
Count the number of courses in the Physics department.
SELECT count(DISTINCT course_id) FROM course WHERE dept_name = 'Physics'
[ "Count", "the", "number", "of", "courses", "in", "the", "Physics", "department", "." ]
[ { "id": 1, "type": "column", "value": "dept_name" }, { "id": 3, "type": "column", "value": "course_id" }, { "id": 2, "type": "value", "value": "Physics" }, { "id": 0, "type": "table", "value": "course" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [ 8 ] }, { "entity_id": 2, "token_idxs": [ 7 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-TABLE", "O", "O", "B-VALUE", "B-COLUMN", "O" ]
6,797
behavior_monitoring
spider:train_spider.json:3086
How many assessment notes are there in total?
SELECT count(*) FROM ASSESSMENT_NOTES
[ "How", "many", "assessment", "notes", "are", "there", "in", "total", "?" ]
[ { "id": 0, "type": "table", "value": "assessment_notes" } ]
[ { "entity_id": 0, "token_idxs": [ 2, 3 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "I-TABLE", "O", "O", "O", "O", "O" ]
5,313
movies_4
bird:train.json:477
What are the genres of Sky Captain and the World of Tomorrow?
SELECT T3.genre_name FROM movie AS T1 INNER JOIN movie_genres AS T2 ON T1.movie_id = T2.movie_id INNER JOIN genre AS T3 ON T2.genre_id = T3.genre_id WHERE T1.title = 'Sky Captain and the World of Tomorrow'
[ "What", "are", "the", "genres", "of", "Sky", "Captain", "and", "the", "World", "of", "Tomorrow", "?" ]
[ { "id": 3, "type": "value", "value": "Sky Captain and the World of Tomorrow" }, { "id": 5, "type": "table", "value": "movie_genres" }, { "id": 0, "type": "column", "value": "genre_name" }, { "id": 6, "type": "column", "value": "genre_id" }, { "id": 7, "type": "column", "value": "movie_id" }, { "id": 1, "type": "table", "value": "genre" }, { "id": 2, "type": "column", "value": "title" }, { "id": 4, "type": "table", "value": "movie" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 5, 6, 7, 8, 9, 10, 11 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-TABLE", "O", "B-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "O" ]
9,863
formula_1
bird:dev.json:972
Which drivers who were born in 1971 and has the fastest lap time on the race? Give id and code of these drivers.
SELECT T2.driverId, T2.code FROM results AS T1 INNER JOIN drivers AS T2 on T1.driverId = T2.driverId WHERE STRFTIME('%Y', T2.dob) = '1971' AND T1.fastestLapTime IS NOT NULL
[ "Which", "drivers", "who", "were", "born", "in", "1971", "and", "has", "the", "fastest", "lap", "time", "on", "the", "race", "?", "Give", "i", "d", "and", "code", "of", "these", "drivers", "." ]
[ { "id": 5, "type": "column", "value": "fastestlaptime" }, { "id": 0, "type": "column", "value": "driverid" }, { "id": 2, "type": "table", "value": "results" }, { "id": 3, "type": "table", "value": "drivers" }, { "id": 1, "type": "column", "value": "code" }, { "id": 4, "type": "value", "value": "1971" }, { "id": 7, "type": "column", "value": "dob" }, { "id": 6, "type": "value", "value": "%Y" } ]
[ { "entity_id": 0, "token_idxs": [ 1, 18, 19 ] }, { "entity_id": 1, "token_idxs": [ 21 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 24 ] }, { "entity_id": 4, "token_idxs": [ 6 ] }, { "entity_id": 5, "token_idxs": [ 10, 11, 12 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-COLUMN", "O", "O", "O", "O", "B-VALUE", "O", "O", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "O", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "B-COLUMN", "O", "O", "B-TABLE", "O" ]
13,130
music_2
spider:train_spider.json:5247
What types of vocals are used in the song "Badlands"?
SELECT TYPE FROM vocals AS T1 JOIN songs AS T2 ON T1.songid = T2.songid WHERE title = "Badlands"
[ "What", "types", "of", "vocals", "are", "used", "in", "the", "song", "\"", "Badlands", "\"", "?" ]
[ { "id": 4, "type": "column", "value": "Badlands" }, { "id": 1, "type": "table", "value": "vocals" }, { "id": 5, "type": "column", "value": "songid" }, { "id": 2, "type": "table", "value": "songs" }, { "id": 3, "type": "column", "value": "title" }, { "id": 0, "type": "column", "value": "type" } ]
[ { "entity_id": 0, "token_idxs": [ 1 ] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [ 8 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 10 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-COLUMN", "O", "B-TABLE", "O", "O", "O", "O", "B-TABLE", "O", "B-COLUMN", "O", "O" ]
7,449
cookbook
bird:train.json:8893
How many ingredients are there in the recipe that is best in helping your body's natural defence against illness and infection?
SELECT COUNT(*) FROM Nutrition AS T1 INNER JOIN Quantity AS T2 ON T1.recipe_id = T2.recipe_id WHERE T1.vitamin_a > 0
[ "How", "many", "ingredients", "are", "there", "in", "the", "recipe", "that", "is", "best", "in", "helping", "your", "body", "'s", "natural", "defence", "against", "illness", "and", "infection", "?" ]
[ { "id": 0, "type": "table", "value": "nutrition" }, { "id": 2, "type": "column", "value": "vitamin_a" }, { "id": 4, "type": "column", "value": "recipe_id" }, { "id": 1, "type": "table", "value": "quantity" }, { "id": 3, "type": "value", "value": "0" } ]
[ { "entity_id": 0, "token_idxs": [ 21 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 7 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-TABLE", "O" ]
3,432
university
bird:train.json:8088
Which country is University of Veterinary Medicine Vienna located in? Give its country id.
SELECT country_id FROM university WHERE university_name = 'University of Veterinary Medicine Vienna'
[ "Which", "country", "is", "University", "of", "Veterinary", "Medicine", "Vienna", "located", "in", "?", "Give", "its", "country", "i", "d." ]
[ { "id": 3, "type": "value", "value": "University of Veterinary Medicine Vienna" }, { "id": 2, "type": "column", "value": "university_name" }, { "id": 0, "type": "table", "value": "university" }, { "id": 1, "type": "column", "value": "country_id" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [ 13, 14, 15 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 4, 5, 6, 7 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-TABLE", "B-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "O", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN" ]
2,677
movie_3
bird:train.json:9394
Who are the actors starred in the film "Bound Cheaper"?
SELECT T1.first_name, T1.last_name FROM actor AS T1 INNER JOIN film_actor AS T2 ON T1.actor_id = T2.actor_id INNER JOIN film AS T3 ON T2.film_id = T3.film_id WHERE T3.title = 'BOUND CHEAPER'
[ "Who", "are", "the", "actors", "starred", "in", "the", "film", "\"", "Bound", "Cheaper", "\"", "?" ]
[ { "id": 4, "type": "value", "value": "BOUND CHEAPER" }, { "id": 0, "type": "column", "value": "first_name" }, { "id": 6, "type": "table", "value": "film_actor" }, { "id": 1, "type": "column", "value": "last_name" }, { "id": 8, "type": "column", "value": "actor_id" }, { "id": 7, "type": "column", "value": "film_id" }, { "id": 3, "type": "column", "value": "title" }, { "id": 5, "type": "table", "value": "actor" }, { "id": 2, "type": "table", "value": "film" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 7 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 9, 10 ] }, { "entity_id": 5, "token_idxs": [ 3 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-TABLE", "O", "O", "O", "B-TABLE", "O", "B-VALUE", "I-VALUE", "O", "O" ]
8,238
baseball_1
spider:train_spider.json:3649
List three countries which are the origins of the least players.
SELECT birth_country FROM player GROUP BY birth_country ORDER BY count(*) ASC LIMIT 3;
[ "List", "three", "countries", "which", "are", "the", "origins", "of", "the", "least", "players", "." ]
[ { "id": 1, "type": "column", "value": "birth_country" }, { "id": 0, "type": "table", "value": "player" } ]
[ { "entity_id": 0, "token_idxs": [ 9 ] }, { "entity_id": 1, "token_idxs": [ 4, 5 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 7 ] }, { "entity_id": 4, "token_idxs": [ 11 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O", "B-TABLE", "O", "O" ]
2,704
farm
spider:train_spider.json:32
List the official name and status of the city with the largest population.
SELECT Official_Name , Status FROM city ORDER BY Population DESC LIMIT 1
[ "List", "the", "official", "name", "and", "status", "of", "the", "city", "with", "the", "largest", "population", "." ]
[ { "id": 1, "type": "column", "value": "official_name" }, { "id": 3, "type": "column", "value": "population" }, { "id": 2, "type": "column", "value": "status" }, { "id": 0, "type": "table", "value": "city" } ]
[ { "entity_id": 0, "token_idxs": [ 8 ] }, { "entity_id": 1, "token_idxs": [ 2, 3 ] }, { "entity_id": 2, "token_idxs": [ 5 ] }, { "entity_id": 3, "token_idxs": [ 12 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "I-COLUMN", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "O", "B-COLUMN", "O" ]
10,485
movies_4
bird:train.json:556
What keyword can the user use to search for the movie Finding Nemo?
SELECT T3.keyword_name FROM movie AS T1 INNER JOIN movie_keywords AS T2 ON T1.movie_id = T2.movie_id INNER JOIN keyword AS T3 ON T2.keyword_id = T3.keyword_id WHERE T1.title = 'Finding Nemo'
[ "What", "keyword", "can", "the", "user", "use", "to", "search", "for", "the", "movie", "Finding", "Nemo", "?" ]
[ { "id": 5, "type": "table", "value": "movie_keywords" }, { "id": 0, "type": "column", "value": "keyword_name" }, { "id": 3, "type": "value", "value": "Finding Nemo" }, { "id": 6, "type": "column", "value": "keyword_id" }, { "id": 7, "type": "column", "value": "movie_id" }, { "id": 1, "type": "table", "value": "keyword" }, { "id": 2, "type": "column", "value": "title" }, { "id": 4, "type": "table", "value": "movie" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 1 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 11, 12 ] }, { "entity_id": 4, "token_idxs": [ 10 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "B-TABLE", "B-VALUE", "I-VALUE", "O" ]
10,684
phone_1
spider:train_spider.json:1023
the names of models that launched between 2002 and 2004.
SELECT Model_name FROM chip_model WHERE Launch_year BETWEEN 2002 AND 2004;
[ "the", "names", "of", "models", "that", "launched", "between", "2002", "and", "2004", "." ]
[ { "id": 2, "type": "column", "value": "launch_year" }, { "id": 0, "type": "table", "value": "chip_model" }, { "id": 1, "type": "column", "value": "model_name" }, { "id": 3, "type": "value", "value": "2002" }, { "id": 4, "type": "value", "value": "2004" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 6 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O" ]
3,527
soccer_2016
bird:train.json:2010
List the name of England players.
SELECT T1.Player_Name FROM Player AS T1 INNER JOIN Country AS T2 ON T1.Country_Name = T2.Country_ID WHERE T2.Country_Name = 'England'
[ "List", "the", "name", "of", "England", "players", "." ]
[ { "id": 3, "type": "column", "value": "country_name" }, { "id": 0, "type": "column", "value": "player_name" }, { "id": 5, "type": "column", "value": "country_id" }, { "id": 2, "type": "table", "value": "country" }, { "id": 4, "type": "value", "value": "England" }, { "id": 1, "type": "table", "value": "player" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 5 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 4 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "B-VALUE", "B-TABLE", "O" ]
8,085
retails
bird:train.json:6870
What is the lowest supply cost for the part "hot spring dodger dim light"?
SELECT MIN(T1.ps_supplycost) FROM partsupp AS T1 INNER JOIN part AS T2 ON T1.ps_partkey = T2.p_partkey WHERE T2.p_name = 'hot spring dodger dim light'
[ "What", "is", "the", "lowest", "supply", "cost", "for", "the", "part", "\"", "hot", "spring", "dodger", "dim", "light", "\"", "?" ]
[ { "id": 3, "type": "value", "value": "hot spring dodger dim light" }, { "id": 4, "type": "column", "value": "ps_supplycost" }, { "id": 5, "type": "column", "value": "ps_partkey" }, { "id": 6, "type": "column", "value": "p_partkey" }, { "id": 0, "type": "table", "value": "partsupp" }, { "id": 2, "type": "column", "value": "p_name" }, { "id": 1, "type": "table", "value": "part" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 8 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 10, 11, 12, 13, 14 ] }, { "entity_id": 4, "token_idxs": [ 4, 5 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "B-TABLE", "O", "B-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "O", "O" ]
514
retail_world
bird:train.json:6346
Give the reorder level for the products from the supplier "Nord-Ost-Fisch Handelsgesellschaft mbH".
SELECT T1.ReorderLevel FROM Products AS T1 INNER JOIN Suppliers AS T2 ON T1.SupplierID = T2.SupplierID WHERE T2.CompanyName = 'Nord-Ost-Fisch Handelsgesellschaft mbH'
[ "Give", "the", "reorder", "level", "for", "the", "products", "from", "the", "supplier", "\"", "Nord", "-", "Ost", "-", "Fisch", "Handelsgesellschaft", "mbH", "\"", "." ]
[ { "id": 4, "type": "value", "value": "Nord-Ost-Fisch Handelsgesellschaft mbH" }, { "id": 0, "type": "column", "value": "reorderlevel" }, { "id": 3, "type": "column", "value": "companyname" }, { "id": 5, "type": "column", "value": "supplierid" }, { "id": 2, "type": "table", "value": "suppliers" }, { "id": 1, "type": "table", "value": "products" } ]
[ { "entity_id": 0, "token_idxs": [ 2, 3 ] }, { "entity_id": 1, "token_idxs": [ 6 ] }, { "entity_id": 2, "token_idxs": [ 9 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 11, 12, 13, 14, 15, 16, 17 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "B-TABLE", "O", "O", "B-TABLE", "O", "B-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "O", "O" ]
10,960
cre_Drama_Workshop_Groups
spider:train_spider.json:5123
Find the states or counties where the stores with marketing region code "CA" are located.
SELECT T1.State_County FROM Addresses AS T1 JOIN Stores AS T2 ON T1.Address_ID = T2.Address_ID WHERE T2.Marketing_Region_Code = "CA"
[ "Find", "the", "states", "or", "counties", "where", "the", "stores", "with", "marketing", "region", "code", "\"", "CA", "\"", "are", "located", "." ]
[ { "id": 3, "type": "column", "value": "marketing_region_code" }, { "id": 0, "type": "column", "value": "state_county" }, { "id": 5, "type": "column", "value": "address_id" }, { "id": 1, "type": "table", "value": "addresses" }, { "id": 2, "type": "table", "value": "stores" }, { "id": 4, "type": "column", "value": "CA" } ]
[ { "entity_id": 0, "token_idxs": [ 2, 4 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 7 ] }, { "entity_id": 3, "token_idxs": [ 9, 10, 11 ] }, { "entity_id": 4, "token_idxs": [ 13 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "O", "B-COLUMN", "O", "O", "O", "O" ]
11,690
financial
bird:dev.json:162
What is the region of the client with the id 3541 from?
SELECT T1.A3 FROM district AS T1 INNER JOIN client AS T2 ON T1.district_id = T2.district_id WHERE T2.client_id = 3541
[ "What", "is", "the", "region", "of", "the", "client", "with", "the", "i", "d", "3541", "from", "?" ]
[ { "id": 5, "type": "column", "value": "district_id" }, { "id": 3, "type": "column", "value": "client_id" }, { "id": 1, "type": "table", "value": "district" }, { "id": 2, "type": "table", "value": "client" }, { "id": 4, "type": "value", "value": "3541" }, { "id": 0, "type": "column", "value": "a3" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 6 ] }, { "entity_id": 3, "token_idxs": [ 9, 10 ] }, { "entity_id": 4, "token_idxs": [ 11 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "I-COLUMN", "B-VALUE", "O", "O" ]
13,369
e_government
spider:train_spider.json:6335
What are the payment method codes that have been used by more than 3 parties?
SELECT payment_method_code FROM parties GROUP BY payment_method_code HAVING count(*) > 3
[ "What", "are", "the", "payment", "method", "codes", "that", "have", "been", "used", "by", "more", "than", "3", "parties", "?" ]
[ { "id": 1, "type": "column", "value": "payment_method_code" }, { "id": 0, "type": "table", "value": "parties" }, { "id": 2, "type": "value", "value": "3" } ]
[ { "entity_id": 0, "token_idxs": [ 14 ] }, { "entity_id": 1, "token_idxs": [ 3, 4, 5 ] }, { "entity_id": 2, "token_idxs": [ 13 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "O", "O", "O", "O", "O", "O", "O", "B-VALUE", "B-TABLE", "O" ]
3,483
trains
bird:train.json:702
What is the total number of short cars on all the trains that run in the east direction?
SELECT SUM(CASE WHEN T1.len = 'short' then 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'
[ "What", "is", "the", "total", "number", "of", "short", "cars", "on", "all", "the", "trains", "that", "run", "in", "the", "east", "direction", "?" ]
[ { "id": 2, "type": "column", "value": "direction" }, { "id": 4, "type": "column", "value": "train_id" }, { "id": 1, "type": "table", "value": "trains" }, { "id": 9, "type": "value", "value": "short" }, { "id": 0, "type": "table", "value": "cars" }, { "id": 3, "type": "value", "value": "east" }, { "id": 8, "type": "column", "value": "len" }, { "id": 5, "type": "column", "value": "id" }, { "id": 6, "type": "value", "value": "0" }, { "id": 7, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [ 7 ] }, { "entity_id": 1, "token_idxs": [ 11 ] }, { "entity_id": 2, "token_idxs": [ 17 ] }, { "entity_id": 3, "token_idxs": [ 16 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [ 6 ] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "B-VALUE", "B-TABLE", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "B-VALUE", "B-COLUMN", "O" ]
6,924
video_games
bird:train.json:3475
What is the genre of the game "Grand Theft Auto V"?
SELECT T2.genre_name FROM game AS T1 INNER JOIN genre AS T2 ON T1.genre_id = T2.id WHERE T1.game_name = 'Grand Theft Auto V'
[ "What", "is", "the", "genre", "of", "the", "game", "\"", "Grand", "Theft", "Auto", "V", "\"", "?" ]
[ { "id": 4, "type": "value", "value": "Grand Theft Auto V" }, { "id": 0, "type": "column", "value": "genre_name" }, { "id": 3, "type": "column", "value": "game_name" }, { "id": 5, "type": "column", "value": "genre_id" }, { "id": 2, "type": "table", "value": "genre" }, { "id": 1, "type": "table", "value": "game" }, { "id": 6, "type": "column", "value": "id" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 6 ] }, { "entity_id": 2, "token_idxs": [ 3 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 8, 9, 10, 11 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-TABLE", "O", "O", "B-TABLE", "O", "B-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "O", "O" ]
6,054
financial
bird:dev.json:109
How many clients opened their accounts in Jesenik branch were women?
SELECT COUNT(T1.client_id) FROM client AS T1 INNER JOIN district AS T2 ON T1.district_id = T2.district_id WHERE T1.gender = 'F' AND T2.A2 = 'Jesenik'
[ "How", "many", "clients", "opened", "their", "accounts", "in", "Jesenik", "branch", "were", "women", "?" ]
[ { "id": 3, "type": "column", "value": "district_id" }, { "id": 2, "type": "column", "value": "client_id" }, { "id": 1, "type": "table", "value": "district" }, { "id": 7, "type": "value", "value": "Jesenik" }, { "id": 0, "type": "table", "value": "client" }, { "id": 4, "type": "column", "value": "gender" }, { "id": 6, "type": "column", "value": "a2" }, { "id": 5, "type": "value", "value": "F" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 7 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "O", "O", "B-VALUE", "O", "O", "O", "O" ]
4,741
talkingdata
bird:train.json:1041
How many male users are in the age group of M32-38?
SELECT COUNT(gender) FROM gender_age WHERE gender = 'M' AND `group` = 'M32-38'
[ "How", "many", "male", "users", "are", "in", "the", "age", "group", "of", "M32", "-", "38", "?" ]
[ { "id": 0, "type": "table", "value": "gender_age" }, { "id": 1, "type": "column", "value": "gender" }, { "id": 4, "type": "value", "value": "M32-38" }, { "id": 3, "type": "column", "value": "group" }, { "id": 2, "type": "value", "value": "M" } ]
[ { "entity_id": 0, "token_idxs": [ 7 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 2 ] }, { "entity_id": 3, "token_idxs": [ 8 ] }, { "entity_id": 4, "token_idxs": [ 10, 11, 12 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-VALUE", "O", "O", "O", "O", "B-TABLE", "B-COLUMN", "O", "B-VALUE", "I-VALUE", "I-VALUE", "O" ]
1,235
college_1
spider:train_spider.json:3231
How many departments does the college has?
SELECT count(DISTINCT dept_name) FROM department
[ "How", "many", "departments", "does", "the", "college", "has", "?" ]
[ { "id": 0, "type": "table", "value": "department" }, { "id": 1, "type": "column", "value": "dept_name" } ]
[ { "entity_id": 0, "token_idxs": [ 6 ] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "O" ]
1,753
boat_1
bird:test.json:869
What is the ids of sailors that haven’t reserved a boat?
SELECT sid FROM Sailors EXCEPT SELECT sid FROM Reserves
[ "What", "is", "the", "ids", "of", "sailors", "that", "have", "n’t", "reserved", "a", "boat", "?" ]
[ { "id": 1, "type": "table", "value": "reserves" }, { "id": 0, "type": "table", "value": "sailors" }, { "id": 2, "type": "column", "value": "sid" } ]
[ { "entity_id": 0, "token_idxs": [ 5 ] }, { "entity_id": 1, "token_idxs": [ 9 ] }, { "entity_id": 2, "token_idxs": [ 3 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "B-TABLE", "O", "O", "O", "B-TABLE", "O", "O", "O" ]
13,630
movie_3
bird:train.json:9122
Please list the full names of all the actors that have starred in the film with the highest replacement cost.
SELECT first_name, last_name FROM actor AS T1 INNER JOIN film_actor AS T2 ON T1.actor_id = T2.actor_id INNER JOIN film AS T3 ON T2.film_id = T3.film_id ORDER BY T3.replacement_cost DESC LIMIT 1
[ "Please", "list", "the", "full", "names", "of", "all", "the", "actors", "that", "have", "starred", "in", "the", "film", "with", "the", "highest", "replacement", "cost", "." ]
[ { "id": 3, "type": "column", "value": "replacement_cost" }, { "id": 0, "type": "column", "value": "first_name" }, { "id": 5, "type": "table", "value": "film_actor" }, { "id": 1, "type": "column", "value": "last_name" }, { "id": 7, "type": "column", "value": "actor_id" }, { "id": 6, "type": "column", "value": "film_id" }, { "id": 4, "type": "table", "value": "actor" }, { "id": 2, "type": "table", "value": "film" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 4 ] }, { "entity_id": 2, "token_idxs": [ 14 ] }, { "entity_id": 3, "token_idxs": [ 18, 19 ] }, { "entity_id": 4, "token_idxs": [ 8 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O" ]