question_id
int64 0
16.1k
| db_id
stringclasses 259
values | dber_id
stringlengths 15
29
| question
stringlengths 16
325
| SQL
stringlengths 18
1.25k
| tokens
listlengths 4
62
| entities
listlengths 0
21
| entity_to_token
listlengths 20
20
| dber_tags
listlengths 4
62
|
|---|---|---|---|---|---|---|---|---|
6,873
|
retail_world
|
bird:train.json:6499
|
How many territories are there in the Eastern region?
|
SELECT COUNT(T1.RegionID) FROM Territories AS T1 INNER JOIN Region AS T2 ON T1.RegionID = T2.RegionID WHERE T2.RegionDescription = 'Eastern'
|
[
"How",
"many",
"territories",
"are",
"there",
"in",
"the",
"Eastern",
"region",
"?"
] |
[
{
"id": 2,
"type": "column",
"value": "regiondescription"
},
{
"id": 0,
"type": "table",
"value": "territories"
},
{
"id": 4,
"type": "column",
"value": "regionid"
},
{
"id": 3,
"type": "value",
"value": "Eastern"
},
{
"id": 1,
"type": "table",
"value": "region"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": [
8
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
7
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-VALUE",
"B-TABLE",
"O"
] |
8,938
|
app_store
|
bird:train.json:2526
|
Which apps have multiple genres and what is the total sentiment subjectivity of these apps?
|
SELECT SUM(T2.Sentiment_Subjectivity) FROM playstore AS T1 INNER JOIN user_reviews AS T2 ON T1.App = T2.App WHERE T1.Genres > 1
|
[
"Which",
"apps",
"have",
"multiple",
"genres",
"and",
"what",
"is",
"the",
"total",
"sentiment",
"subjectivity",
"of",
"these",
"apps",
"?"
] |
[
{
"id": 4,
"type": "column",
"value": "sentiment_subjectivity"
},
{
"id": 1,
"type": "table",
"value": "user_reviews"
},
{
"id": 0,
"type": "table",
"value": "playstore"
},
{
"id": 2,
"type": "column",
"value": "genres"
},
{
"id": 5,
"type": "column",
"value": "app"
},
{
"id": 3,
"type": "value",
"value": "1"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
4
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
10,
11
]
},
{
"entity_id": 5,
"token_idxs": [
1
]
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"B-COLUMN",
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"O",
"O",
"O"
] |
35
|
e_government
|
spider:train_spider.json:6333
|
Count the number of cities in the state of Colorado.
|
SELECT count(*) FROM addresses WHERE state_province_county = "Colorado"
|
[
"Count",
"the",
"number",
"of",
"cities",
"in",
"the",
"state",
"of",
"Colorado",
"."
] |
[
{
"id": 1,
"type": "column",
"value": "state_province_county"
},
{
"id": 0,
"type": "table",
"value": "addresses"
},
{
"id": 2,
"type": "column",
"value": "Colorado"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
7
]
},
{
"entity_id": 2,
"token_idxs": [
9
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"O"
] |
14,293
|
department_store
|
spider:train_spider.json:4748
|
What is the code of the product type with an average price higher than the average price of all products?
|
SELECT product_type_code FROM products GROUP BY product_type_code HAVING avg(product_price) > (SELECT avg(product_price) FROM products)
|
[
"What",
"is",
"the",
"code",
"of",
"the",
"product",
"type",
"with",
"an",
"average",
"price",
"higher",
"than",
"the",
"average",
"price",
"of",
"all",
"products",
"?"
] |
[
{
"id": 1,
"type": "column",
"value": "product_type_code"
},
{
"id": 2,
"type": "column",
"value": "product_price"
},
{
"id": 0,
"type": "table",
"value": "products"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
7
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
4
]
},
{
"entity_id": 3,
"token_idxs": [
8
]
},
{
"entity_id": 4,
"token_idxs": [
11
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O"
] |
3,044
|
csu_1
|
spider:train_spider.json:2360
|
Find the names of the campus which has more faculties in 2002 than every campus in Orange county.
|
SELECT T1.campus FROM campuses AS T1 JOIN faculty AS T2 ON T1.id = T2.campus WHERE T2.year = 2002 AND faculty > (SELECT max(faculty) FROM campuses AS T1 JOIN faculty AS T2 ON T1.id = T2.campus WHERE T2.year = 2002 AND T1.county = "Orange")
|
[
"Find",
"the",
"names",
"of",
"the",
"campus",
"which",
"has",
"more",
"faculties",
"in",
"2002",
"than",
"every",
"campus",
"in",
"Orange",
"county",
"."
] |
[
{
"id": 1,
"type": "table",
"value": "campuses"
},
{
"id": 2,
"type": "table",
"value": "faculty"
},
{
"id": 6,
"type": "column",
"value": "faculty"
},
{
"id": 0,
"type": "column",
"value": "campus"
},
{
"id": 7,
"type": "column",
"value": "county"
},
{
"id": 8,
"type": "column",
"value": "Orange"
},
{
"id": 4,
"type": "column",
"value": "year"
},
{
"id": 5,
"type": "value",
"value": "2002"
},
{
"id": 3,
"type": "column",
"value": "id"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
5
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
3
]
},
{
"entity_id": 3,
"token_idxs": [
6
]
},
{
"entity_id": 4,
"token_idxs": [
10
]
},
{
"entity_id": 5,
"token_idxs": [
14
]
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-TABLE",
"O",
"B-COLUMN",
"B-COLUMN",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"B-VALUE",
"O",
"O",
"O",
"O"
] |
14,764
|
beer_factory
|
bird:train.json:5295
|
What is the average cost of root beers purchased for more than 2 dollars and sold in bottles?
|
SELECT AVG(T2.PurchasePrice) FROM rootbeer AS T1 INNER JOIN `transaction` AS T2 ON T1.RootBeerID = T2.RootBeerID INNER JOIN rootbeerbrand AS T3 ON T1.BrandID = T3.BrandID WHERE T1.ContainerType = 'Bottle' AND T2.PurchasePrice > 2
|
[
"What",
"is",
"the",
"average",
"cost",
"of",
"root",
"beers",
"purchased",
"for",
"more",
"than",
"2",
"dollars",
"and",
"sold",
"in",
"bottles",
"?"
] |
[
{
"id": 0,
"type": "table",
"value": "rootbeerbrand"
},
{
"id": 1,
"type": "column",
"value": "purchaseprice"
},
{
"id": 5,
"type": "column",
"value": "containertype"
},
{
"id": 3,
"type": "table",
"value": "transaction"
},
{
"id": 8,
"type": "column",
"value": "rootbeerid"
},
{
"id": 2,
"type": "table",
"value": "rootbeer"
},
{
"id": 4,
"type": "column",
"value": "brandid"
},
{
"id": 6,
"type": "value",
"value": "Bottle"
},
{
"id": 7,
"type": "value",
"value": "2"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
8
]
},
{
"entity_id": 2,
"token_idxs": [
6,
7
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": [
17
]
},
{
"entity_id": 7,
"token_idxs": [
12
]
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"I-TABLE",
"B-COLUMN",
"O",
"O",
"O",
"B-VALUE",
"O",
"O",
"O",
"O",
"B-VALUE",
"O"
] |
7,579
|
thrombosis_prediction
|
bird:dev.json:1191
|
What percentage of male patients who first presented to the hospital in 1981 were diagnosed with BEHCET?
|
SELECT CAST(SUM(CASE WHEN Diagnosis = 'BEHCET' THEN 1 ELSE 0 END) AS REAL) * 100 / COUNT(ID) FROM Patient WHERE STRFTIME('%Y', `First Date`) = '1981' AND SEX = 'M'
|
[
"What",
"percentage",
"of",
"male",
"patients",
"who",
"first",
"presented",
"to",
"the",
"hospital",
"in",
"1981",
"were",
"diagnosed",
"with",
"BEHCET",
"?"
] |
[
{
"id": 7,
"type": "column",
"value": "First Date"
},
{
"id": 10,
"type": "column",
"value": "diagnosis"
},
{
"id": 0,
"type": "table",
"value": "patient"
},
{
"id": 11,
"type": "value",
"value": "BEHCET"
},
{
"id": 1,
"type": "value",
"value": "1981"
},
{
"id": 2,
"type": "column",
"value": "sex"
},
{
"id": 4,
"type": "value",
"value": "100"
},
{
"id": 5,
"type": "column",
"value": "id"
},
{
"id": 6,
"type": "value",
"value": "%Y"
},
{
"id": 3,
"type": "value",
"value": "M"
},
{
"id": 8,
"type": "value",
"value": "0"
},
{
"id": 9,
"type": "value",
"value": "1"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
3,
4
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
10,
11
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"O",
"O",
"O",
"O",
"B-VALUE",
"I-VALUE",
"O",
"O",
"O",
"O",
"O",
"O"
] |
5,143
|
real_estate_rentals
|
bird:test.json:1461
|
Return the number of rooms with each different room size.
|
SELECT room_size , count(*) FROM Rooms GROUP BY room_size
|
[
"Return",
"the",
"number",
"of",
"rooms",
"with",
"each",
"different",
"room",
"size",
"."
] |
[
{
"id": 1,
"type": "column",
"value": "room_size"
},
{
"id": 0,
"type": "table",
"value": "rooms"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
4
]
},
{
"entity_id": 1,
"token_idxs": [
8,
9
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O"
] |
14,785
|
cs_semester
|
bird:train.json:892
|
Among the most popular professors, how many are females?
|
SELECT COUNT(prof_id) FROM prof WHERE gender = 'Female' AND popularity = ( SELECT MAX(popularity) FROM prof )
|
[
"Among",
"the",
"most",
"popular",
"professors",
",",
"how",
"many",
"are",
"females",
"?"
] |
[
{
"id": 4,
"type": "column",
"value": "popularity"
},
{
"id": 1,
"type": "column",
"value": "prof_id"
},
{
"id": 2,
"type": "column",
"value": "gender"
},
{
"id": 3,
"type": "value",
"value": "Female"
},
{
"id": 0,
"type": "table",
"value": "prof"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
4
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
9
]
},
{
"entity_id": 4,
"token_idxs": [
3
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-VALUE",
"O"
] |
9,459
|
club_1
|
spider:train_spider.json:4319
|
Compute the average age of the members in the club "Tennis Club".
|
SELECT avg(t3.age) FROM club AS t1 JOIN member_of_club AS t2 ON t1.clubid = t2.clubid JOIN student AS t3 ON t2.stuid = t3.stuid WHERE t1.clubname = "Tennis Club"
|
[
"Compute",
"the",
"average",
"age",
"of",
"the",
"members",
"in",
"the",
"club",
"\"",
"Tennis",
"Club",
"\"",
"."
] |
[
{
"id": 5,
"type": "table",
"value": "member_of_club"
},
{
"id": 2,
"type": "column",
"value": "Tennis Club"
},
{
"id": 1,
"type": "column",
"value": "clubname"
},
{
"id": 0,
"type": "table",
"value": "student"
},
{
"id": 7,
"type": "column",
"value": "clubid"
},
{
"id": 6,
"type": "column",
"value": "stuid"
},
{
"id": 4,
"type": "table",
"value": "club"
},
{
"id": 3,
"type": "column",
"value": "age"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
11
]
},
{
"entity_id": 3,
"token_idxs": [
3
]
},
{
"entity_id": 4,
"token_idxs": [
12
]
},
{
"entity_id": 5,
"token_idxs": [
6,
7,
8
]
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": [
9
]
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"I-TABLE",
"I-TABLE",
"B-COLUMN",
"O",
"B-COLUMN",
"B-TABLE",
"O",
"O"
] |
3,450
|
retail_world
|
bird:train.json:6625
|
What are the highest salary earn by the the employee and what is his/her position in the company?
|
SELECT Salary, Title FROM Employees WHERE Salary = ( SELECT MAX(Salary) FROM Employees )
|
[
"What",
"are",
"the",
"highest",
"salary",
"earn",
"by",
"the",
"the",
"employee",
"and",
"what",
"is",
"his",
"/",
"her",
"position",
"in",
"the",
"company",
"?"
] |
[
{
"id": 0,
"type": "table",
"value": "employees"
},
{
"id": 1,
"type": "column",
"value": "salary"
},
{
"id": 2,
"type": "column",
"value": "title"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
9
]
},
{
"entity_id": 1,
"token_idxs": [
4
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O"
] |
14,468
|
dorm_1
|
spider:train_spider.json:5691
|
How many dorms have amenities?
|
SELECT count(DISTINCT dormid) FROM has_amenity
|
[
"How",
"many",
"dorms",
"have",
"amenities",
"?"
] |
[
{
"id": 0,
"type": "table",
"value": "has_amenity"
},
{
"id": 1,
"type": "column",
"value": "dormid"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
3,
4
]
},
{
"entity_id": 1,
"token_idxs": [
2
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"B-TABLE",
"I-TABLE",
"O"
] |
14,833
|
talkingdata
|
bird:train.json:1165
|
Calculate the percentage of male users among all device users.
|
SELECT SUM(IIF(gender = 'M', 1, 0)) / COUNT(device_id) AS per FROM gender_age
|
[
"Calculate",
"the",
"percentage",
"of",
"male",
"users",
"among",
"all",
"device",
"users",
"."
] |
[
{
"id": 0,
"type": "table",
"value": "gender_age"
},
{
"id": 1,
"type": "column",
"value": "device_id"
},
{
"id": 4,
"type": "column",
"value": "gender"
},
{
"id": 2,
"type": "value",
"value": "1"
},
{
"id": 3,
"type": "value",
"value": "0"
},
{
"id": 5,
"type": "value",
"value": "M"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
8
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": [
4
]
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"B-VALUE",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O"
] |
11,787
|
student_club
|
bird:dev.json:1426
|
List the last name of members with a major in environmental engineering and include its department and college name.
|
SELECT T2.last_name, T1.department, T1.college FROM major AS T1 INNER JOIN member AS T2 ON T1.major_id = T2.link_to_major WHERE T2.position = 'Member' AND T1.major_name = 'Environmental Engineering'
|
[
"List",
"the",
"last",
"name",
"of",
"members",
"with",
"a",
"major",
"in",
"environmental",
"engineering",
"and",
"include",
"its",
"department",
"and",
"college",
"name",
"."
] |
[
{
"id": 10,
"type": "value",
"value": "Environmental Engineering"
},
{
"id": 6,
"type": "column",
"value": "link_to_major"
},
{
"id": 1,
"type": "column",
"value": "department"
},
{
"id": 9,
"type": "column",
"value": "major_name"
},
{
"id": 0,
"type": "column",
"value": "last_name"
},
{
"id": 5,
"type": "column",
"value": "major_id"
},
{
"id": 7,
"type": "column",
"value": "position"
},
{
"id": 2,
"type": "column",
"value": "college"
},
{
"id": 4,
"type": "table",
"value": "member"
},
{
"id": 8,
"type": "value",
"value": "Member"
},
{
"id": 3,
"type": "table",
"value": "major"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2,
3
]
},
{
"entity_id": 1,
"token_idxs": [
15
]
},
{
"entity_id": 2,
"token_idxs": [
17
]
},
{
"entity_id": 3,
"token_idxs": [
8
]
},
{
"entity_id": 4,
"token_idxs": [
5
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": [
18
]
},
{
"entity_id": 10,
"token_idxs": [
10,
11
]
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"B-TABLE",
"O",
"O",
"B-TABLE",
"O",
"B-VALUE",
"I-VALUE",
"O",
"O",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"B-COLUMN",
"O"
] |
2,615
|
codebase_community
|
bird:dev.json:659
|
How many tags have post count between 5,000 to 7,000?
|
SELECT COUNT(Id) FROM tags WHERE Count BETWEEN 5000 AND 7000
|
[
"How",
"many",
"tags",
"have",
"post",
"count",
"between",
"5,000",
"to",
"7,000",
"?"
] |
[
{
"id": 1,
"type": "column",
"value": "count"
},
{
"id": 0,
"type": "table",
"value": "tags"
},
{
"id": 2,
"type": "value",
"value": "5000"
},
{
"id": 3,
"type": "value",
"value": "7000"
},
{
"id": 4,
"type": "column",
"value": "id"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": [
5
]
},
{
"entity_id": 2,
"token_idxs": [
7
]
},
{
"entity_id": 3,
"token_idxs": [
9
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"O",
"O",
"B-COLUMN",
"O",
"B-VALUE",
"O",
"B-VALUE",
"O"
] |
5,238
|
beer_factory
|
bird:train.json:5353
|
How many stars did Urijah Faber rate for Frostie?
|
SELECT T2.StarRating FROM customers AS T1 INNER JOIN rootbeerreview AS T2 ON T1.CustomerID = T2.CustomerID INNER JOIN rootbeerbrand AS T3 ON T2.BrandID = T3.BrandID WHERE T1.First = 'Urijah' AND T1.Last = 'Faber' AND T3.BrandName = 'Frostie'
|
[
"How",
"many",
"stars",
"did",
"Urijah",
"Faber",
"rate",
"for",
"Frostie",
"?"
] |
[
{
"id": 3,
"type": "table",
"value": "rootbeerreview"
},
{
"id": 1,
"type": "table",
"value": "rootbeerbrand"
},
{
"id": 0,
"type": "column",
"value": "starrating"
},
{
"id": 11,
"type": "column",
"value": "customerid"
},
{
"id": 2,
"type": "table",
"value": "customers"
},
{
"id": 9,
"type": "column",
"value": "brandname"
},
{
"id": 4,
"type": "column",
"value": "brandid"
},
{
"id": 10,
"type": "value",
"value": "Frostie"
},
{
"id": 6,
"type": "value",
"value": "Urijah"
},
{
"id": 5,
"type": "column",
"value": "first"
},
{
"id": 8,
"type": "value",
"value": "Faber"
},
{
"id": 7,
"type": "column",
"value": "last"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": [
4
]
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": [
5
]
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": [
8
]
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"B-VALUE",
"B-VALUE",
"O",
"O",
"B-VALUE",
"O"
] |
14,156
|
public_review_platform
|
bird:train.json:4107
|
What is the most common type of compliments that a user has received from other users?
|
SELECT T2.compliment_type FROM Users_Compliments AS T1 INNER JOIN Compliments AS T2 ON T1.compliment_id = T2.compliment_id GROUP BY T2.compliment_type ORDER BY COUNT(T2.compliment_type) DESC LIMIT 1
|
[
"What",
"is",
"the",
"most",
"common",
"type",
"of",
"compliments",
"that",
"a",
"user",
"has",
"received",
"from",
"other",
"users",
"?"
] |
[
{
"id": 1,
"type": "table",
"value": "users_compliments"
},
{
"id": 0,
"type": "column",
"value": "compliment_type"
},
{
"id": 3,
"type": "column",
"value": "compliment_id"
},
{
"id": 2,
"type": "table",
"value": "compliments"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
5
]
},
{
"entity_id": 1,
"token_idxs": [
10,
15
]
},
{
"entity_id": 2,
"token_idxs": [
7
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"B-TABLE",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-TABLE",
"O"
] |
7,305
|
university
|
bird:train.json:8047
|
How many universities had over 30000 students in 2011?
|
SELECT COUNT(*) FROM university_year WHERE year = 2011 AND num_students > 30000
|
[
"How",
"many",
"universities",
"had",
"over",
"30000",
"students",
"in",
"2011",
"?"
] |
[
{
"id": 0,
"type": "table",
"value": "university_year"
},
{
"id": 3,
"type": "column",
"value": "num_students"
},
{
"id": 4,
"type": "value",
"value": "30000"
},
{
"id": 1,
"type": "column",
"value": "year"
},
{
"id": 2,
"type": "value",
"value": "2011"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
8
]
},
{
"entity_id": 3,
"token_idxs": [
6
]
},
{
"entity_id": 4,
"token_idxs": [
5
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"O",
"O",
"B-VALUE",
"B-COLUMN",
"O",
"B-VALUE",
"O"
] |
14,960
|
cre_Doc_Tracking_DB
|
spider:train_spider.json:4194
|
Show the description for role name "Proof Reader".
|
SELECT role_description FROM ROLES WHERE role_name = "Proof Reader"
|
[
"Show",
"the",
"description",
"for",
"role",
"name",
"\"",
"Proof",
"Reader",
"\"",
"."
] |
[
{
"id": 1,
"type": "column",
"value": "role_description"
},
{
"id": 3,
"type": "column",
"value": "Proof Reader"
},
{
"id": 2,
"type": "column",
"value": "role_name"
},
{
"id": 0,
"type": "table",
"value": "roles"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
4
]
},
{
"entity_id": 1,
"token_idxs": [
2
]
},
{
"entity_id": 2,
"token_idxs": [
5
]
},
{
"entity_id": 3,
"token_idxs": [
7,
8
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"O",
"B-TABLE",
"B-COLUMN",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"O"
] |
8,856
|
menu
|
bird:train.json:5492
|
How many menus were created for steamship?
|
SELECT COUNT(*) FROM Menu WHERE venue = 'STEAMSHIP'
|
[
"How",
"many",
"menus",
"were",
"created",
"for",
"steamship",
"?"
] |
[
{
"id": 2,
"type": "value",
"value": "STEAMSHIP"
},
{
"id": 1,
"type": "column",
"value": "venue"
},
{
"id": 0,
"type": "table",
"value": "menu"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
5
]
},
{
"entity_id": 1,
"token_idxs": [
6
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"B-COLUMN",
"O"
] |
4,033
|
county_public_safety
|
spider:train_spider.json:2536
|
List the distinct police forces of counties whose location is not on east side.
|
SELECT DISTINCT Police_force FROM county_public_safety WHERE LOCATION != "East"
|
[
"List",
"the",
"distinct",
"police",
"forces",
"of",
"counties",
"whose",
"location",
"is",
"not",
"on",
"east",
"side",
"."
] |
[
{
"id": 0,
"type": "table",
"value": "county_public_safety"
},
{
"id": 1,
"type": "column",
"value": "police_force"
},
{
"id": 2,
"type": "column",
"value": "location"
},
{
"id": 3,
"type": "column",
"value": "East"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
11
]
},
{
"entity_id": 1,
"token_idxs": [
3,
4
]
},
{
"entity_id": 2,
"token_idxs": [
7,
8
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"O",
"O"
] |
8,947
|
swimming
|
spider:train_spider.json:5610
|
Which country has both stadiums with capacity greater than 60000 and stadiums with capacity less than 50000?
|
SELECT country FROM stadium WHERE capacity > 60000 INTERSECT SELECT country FROM stadium WHERE capacity < 50000
|
[
"Which",
"country",
"has",
"both",
"stadiums",
"with",
"capacity",
"greater",
"than",
"60000",
"and",
"stadiums",
"with",
"capacity",
"less",
"than",
"50000",
"?"
] |
[
{
"id": 2,
"type": "column",
"value": "capacity"
},
{
"id": 0,
"type": "table",
"value": "stadium"
},
{
"id": 1,
"type": "column",
"value": "country"
},
{
"id": 3,
"type": "value",
"value": "60000"
},
{
"id": 4,
"type": "value",
"value": "50000"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
11
]
},
{
"entity_id": 1,
"token_idxs": [
1
]
},
{
"entity_id": 2,
"token_idxs": [
6
]
},
{
"entity_id": 3,
"token_idxs": [
9
]
},
{
"entity_id": 4,
"token_idxs": [
16
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-VALUE",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-VALUE",
"O"
] |
2,417
|
university
|
bird:train.json:8056
|
Which country has the University of São Paulo?
|
SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.university_name = 'University of São Paulo'
|
[
"Which",
"country",
"has",
"the",
"University",
"of",
"São",
"Paulo",
"?"
] |
[
{
"id": 4,
"type": "value",
"value": "University of São Paulo"
},
{
"id": 3,
"type": "column",
"value": "university_name"
},
{
"id": 0,
"type": "column",
"value": "country_name"
},
{
"id": 1,
"type": "table",
"value": "university"
},
{
"id": 5,
"type": "column",
"value": "country_id"
},
{
"id": 2,
"type": "table",
"value": "country"
},
{
"id": 6,
"type": "column",
"value": "id"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
4
]
},
{
"entity_id": 2,
"token_idxs": [
1
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
5,
6,
7
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"B-TABLE",
"O",
"O",
"B-TABLE",
"B-VALUE",
"I-VALUE",
"I-VALUE",
"O"
] |
15,448
|
university_rank
|
bird:test.json:1760
|
What are the names, cities, and states of all universities in alphabetical order (by name of the university).
|
SELECT university_name , city , state FROM University ORDER BY university_name
|
[
"What",
"are",
"the",
"names",
",",
"cities",
",",
"and",
"states",
"of",
"all",
"universities",
"in",
"alphabetical",
"order",
"(",
"by",
"name",
"of",
"the",
"university",
")",
"."
] |
[
{
"id": 1,
"type": "column",
"value": "university_name"
},
{
"id": 0,
"type": "table",
"value": "university"
},
{
"id": 3,
"type": "column",
"value": "state"
},
{
"id": 2,
"type": "column",
"value": "city"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
11
]
},
{
"entity_id": 1,
"token_idxs": [
3,
17,
20
]
},
{
"entity_id": 2,
"token_idxs": [
5
]
},
{
"entity_id": 3,
"token_idxs": [
8
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-COLUMN",
"O",
"O"
] |
12,067
|
network_2
|
spider:train_spider.json:4446
|
Find the name of the person who has friends with age above 40 but not under age 30?
|
SELECT T1.name FROM Person AS T1 JOIN PersonFriend AS T2 ON T1.name = T2.name WHERE T2.friend IN (SELECT name FROM Person WHERE age > 40) EXCEPT SELECT T1.name FROM Person AS T1 JOIN PersonFriend AS T2 ON T1.name = T2.name WHERE T2.friend IN (SELECT name FROM Person WHERE age < 30)
|
[
"Find",
"the",
"name",
"of",
"the",
"person",
"who",
"has",
"friends",
"with",
"age",
"above",
"40",
"but",
"not",
"under",
"age",
"30",
"?"
] |
[
{
"id": 2,
"type": "table",
"value": "personfriend"
},
{
"id": 1,
"type": "table",
"value": "person"
},
{
"id": 3,
"type": "column",
"value": "friend"
},
{
"id": 0,
"type": "column",
"value": "name"
},
{
"id": 4,
"type": "column",
"value": "age"
},
{
"id": 5,
"type": "value",
"value": "40"
},
{
"id": 6,
"type": "value",
"value": "30"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": [
5
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
8
]
},
{
"entity_id": 4,
"token_idxs": [
10,
16
]
},
{
"entity_id": 5,
"token_idxs": [
12
]
},
{
"entity_id": 6,
"token_idxs": [
17
]
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"O",
"B-VALUE",
"O",
"O",
"O",
"B-COLUMN",
"B-VALUE",
"O"
] |
1,160
|
toxicology
|
bird:dev.json:306
|
Which molecules have triple bonds and list all the elements they contain.
|
SELECT DISTINCT T1.molecule_id, T2.element FROM bond AS T1 INNER JOIN atom AS T2 ON T1.molecule_id = T2.molecule_id WHERE T1.bond_type = '#'
|
[
"Which",
"molecules",
"have",
"triple",
"bonds",
"and",
"list",
"all",
"the",
"elements",
"they",
"contain",
"."
] |
[
{
"id": 0,
"type": "column",
"value": "molecule_id"
},
{
"id": 4,
"type": "column",
"value": "bond_type"
},
{
"id": 1,
"type": "column",
"value": "element"
},
{
"id": 2,
"type": "table",
"value": "bond"
},
{
"id": 3,
"type": "table",
"value": "atom"
},
{
"id": 5,
"type": "value",
"value": "#"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
1
]
},
{
"entity_id": 1,
"token_idxs": [
9
]
},
{
"entity_id": 2,
"token_idxs": [
4
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"O"
] |
8,821
|
e_commerce
|
bird:test.json:52
|
Which product are listed in orders most frequently? List the id, product name and price.
|
SELECT T1.product_id , T1.product_name , T1.product_price FROM Products AS T1 JOIN Order_items AS T2 ON T1.product_id = T2.product_id GROUP BY T1.product_id ORDER BY count(*) DESC LIMIT 1
|
[
"Which",
"product",
"are",
"listed",
"in",
"orders",
"most",
"frequently",
"?",
"List",
"the",
"i",
"d",
",",
"product",
"name",
"and",
"price",
"."
] |
[
{
"id": 2,
"type": "column",
"value": "product_price"
},
{
"id": 1,
"type": "column",
"value": "product_name"
},
{
"id": 4,
"type": "table",
"value": "order_items"
},
{
"id": 0,
"type": "column",
"value": "product_id"
},
{
"id": 3,
"type": "table",
"value": "products"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
1
]
},
{
"entity_id": 1,
"token_idxs": [
15
]
},
{
"entity_id": 2,
"token_idxs": [
2
]
},
{
"entity_id": 3,
"token_idxs": [
14
]
},
{
"entity_id": 4,
"token_idxs": [
5
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"B-COLUMN",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"B-COLUMN",
"O",
"O",
"O"
] |
9,485
|
simpson_episodes
|
bird:train.json:4185
|
How many crew have their own nickname? List their full name along with the nickname.
|
SELECT COUNT(name) FROM Person WHERE nickname IS NOT NULL;
|
[
"How",
"many",
"crew",
"have",
"their",
"own",
"nickname",
"?",
"List",
"their",
"full",
"name",
"along",
"with",
"the",
"nickname",
"."
] |
[
{
"id": 1,
"type": "column",
"value": "nickname"
},
{
"id": 0,
"type": "table",
"value": "person"
},
{
"id": 2,
"type": "column",
"value": "name"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
10
]
},
{
"entity_id": 1,
"token_idxs": [
5,
6,
7
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"I-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"O"
] |
8,540
|
bakery_1
|
bird:test.json:1519
|
How many goods are available for each food type?
|
SELECT count(*) , food FROM goods GROUP BY food
|
[
"How",
"many",
"goods",
"are",
"available",
"for",
"each",
"food",
"type",
"?"
] |
[
{
"id": 0,
"type": "table",
"value": "goods"
},
{
"id": 1,
"type": "column",
"value": "food"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": [
7
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O"
] |
3,510
|
restaurant_1
|
spider:train_spider.json:2838
|
How many times has the student Linda Smith visited Subway?
|
SELECT count(*) FROM Student JOIN Visits_Restaurant ON Student.StuID = Visits_Restaurant.StuID JOIN Restaurant ON Visits_Restaurant.ResID = Restaurant.ResID WHERE Student.Fname = "Linda" AND Student.Lname = "Smith" AND Restaurant.ResName = "Subway";
|
[
"How",
"many",
"times",
"has",
"the",
"student",
"Linda",
"Smith",
"visited",
"Subway",
"?"
] |
[
{
"id": 2,
"type": "table",
"value": "visits_restaurant"
},
{
"id": 0,
"type": "table",
"value": "restaurant"
},
{
"id": 1,
"type": "table",
"value": "student"
},
{
"id": 8,
"type": "column",
"value": "resname"
},
{
"id": 9,
"type": "column",
"value": "Subway"
},
{
"id": 3,
"type": "column",
"value": "resid"
},
{
"id": 4,
"type": "column",
"value": "fname"
},
{
"id": 5,
"type": "column",
"value": "Linda"
},
{
"id": 6,
"type": "column",
"value": "lname"
},
{
"id": 7,
"type": "column",
"value": "Smith"
},
{
"id": 10,
"type": "column",
"value": "stuid"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
5
]
},
{
"entity_id": 2,
"token_idxs": [
8
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": [
6
]
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": [
7
]
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": [
9
]
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"B-COLUMN",
"B-COLUMN",
"B-TABLE",
"B-COLUMN",
"O"
] |
13,809
|
bike_share_1
|
bird:train.json:9067
|
How many docks were left at the end station for trip ID4069?
|
SELECT SUM(T2.docks_available) FROM trip AS T1 INNER JOIN status AS T2 ON T2.station_id = T1.end_station_id WHERE T1.ID = 4069
|
[
"How",
"many",
"docks",
"were",
"left",
"at",
"the",
"end",
"station",
"for",
"trip",
"ID4069",
"?"
] |
[
{
"id": 4,
"type": "column",
"value": "docks_available"
},
{
"id": 6,
"type": "column",
"value": "end_station_id"
},
{
"id": 5,
"type": "column",
"value": "station_id"
},
{
"id": 1,
"type": "table",
"value": "status"
},
{
"id": 0,
"type": "table",
"value": "trip"
},
{
"id": 3,
"type": "value",
"value": "4069"
},
{
"id": 2,
"type": "column",
"value": "id"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
10
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
11
]
},
{
"entity_id": 4,
"token_idxs": [
2
]
},
{
"entity_id": 5,
"token_idxs": [
8
]
},
{
"entity_id": 6,
"token_idxs": [
7
]
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"B-COLUMN",
"B-COLUMN",
"O",
"B-TABLE",
"B-VALUE",
"O"
] |
525
|
wrestler
|
spider:train_spider.json:1865
|
How many eliminations did each team have?
|
SELECT Team , COUNT(*) FROM elimination GROUP BY Team
|
[
"How",
"many",
"eliminations",
"did",
"each",
"team",
"have",
"?"
] |
[
{
"id": 0,
"type": "table",
"value": "elimination"
},
{
"id": 1,
"type": "column",
"value": "team"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": [
5
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"O",
"O",
"B-COLUMN",
"O",
"O"
] |
14,625
|
company_employee
|
spider:train_spider.json:4107
|
Show names of companies and that of employees in descending order of number of years working for that employee.
|
SELECT T3.Name , T2.Name FROM employment AS T1 JOIN people AS T2 ON T1.People_ID = T2.People_ID JOIN company AS T3 ON T1.Company_ID = T3.Company_ID ORDER BY T1.Year_working
|
[
"Show",
"names",
"of",
"companies",
"and",
"that",
"of",
"employees",
"in",
"descending",
"order",
"of",
"number",
"of",
"years",
"working",
"for",
"that",
"employee",
"."
] |
[
{
"id": 2,
"type": "column",
"value": "year_working"
},
{
"id": 3,
"type": "table",
"value": "employment"
},
{
"id": 5,
"type": "column",
"value": "company_id"
},
{
"id": 6,
"type": "column",
"value": "people_id"
},
{
"id": 1,
"type": "table",
"value": "company"
},
{
"id": 4,
"type": "table",
"value": "people"
},
{
"id": 0,
"type": "column",
"value": "name"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
1
]
},
{
"entity_id": 1,
"token_idxs": [
3
]
},
{
"entity_id": 2,
"token_idxs": [
14,
15
]
},
{
"entity_id": 3,
"token_idxs": [
18
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"B-COLUMN",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"O",
"B-TABLE",
"O"
] |
3,502
|
trains
|
bird:train.json:696
|
Among the trains that run in the east direction, how many of them have at least one car in a non-regular shape?
|
SELECT SUM(CASE WHEN T1.shape IN ('bucket', 'elipse') THEN 1 ELSE 0 end)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'
|
[
"Among",
"the",
"trains",
"that",
"run",
"in",
"the",
"east",
"direction",
",",
"how",
"many",
"of",
"them",
"have",
"at",
"least",
"one",
"car",
"in",
"a",
"non",
"-",
"regular",
"shape",
"?"
] |
[
{
"id": 2,
"type": "column",
"value": "direction"
},
{
"id": 4,
"type": "column",
"value": "train_id"
},
{
"id": 1,
"type": "table",
"value": "trains"
},
{
"id": 9,
"type": "value",
"value": "bucket"
},
{
"id": 10,
"type": "value",
"value": "elipse"
},
{
"id": 8,
"type": "column",
"value": "shape"
},
{
"id": 0,
"type": "table",
"value": "cars"
},
{
"id": 3,
"type": "value",
"value": "east"
},
{
"id": 5,
"type": "column",
"value": "id"
},
{
"id": 6,
"type": "value",
"value": "0"
},
{
"id": 7,
"type": "value",
"value": "1"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
18
]
},
{
"entity_id": 1,
"token_idxs": [
2
]
},
{
"entity_id": 2,
"token_idxs": [
8
]
},
{
"entity_id": 3,
"token_idxs": [
7
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": [
24
]
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-VALUE",
"B-COLUMN",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O"
] |
14,428
|
movielens
|
bird:train.json:2289
|
Among the films directed by directors who direct the best, how many of them have an average rating of over 3.5?
|
SELECT COUNT(*) FROM ( SELECT DISTINCT T2.movieid FROM directors AS T1 INNER JOIN movies2directors AS T2 ON T1.directorid = T2.directorid INNER JOIN u2base AS T3 ON T2.movieid = T3.movieid WHERE T1.d_quality = 5 GROUP BY T2.movieid HAVING AVG(T3.rating) > 3.5 ) AS T1
|
[
"Among",
"the",
"films",
"directed",
"by",
"directors",
"who",
"direct",
"the",
"best",
",",
"how",
"many",
"of",
"them",
"have",
"an",
"average",
"rating",
"of",
"over",
"3.5",
"?"
] |
[
{
"id": 6,
"type": "table",
"value": "movies2directors"
},
{
"id": 8,
"type": "column",
"value": "directorid"
},
{
"id": 2,
"type": "column",
"value": "d_quality"
},
{
"id": 5,
"type": "table",
"value": "directors"
},
{
"id": 0,
"type": "column",
"value": "movieid"
},
{
"id": 1,
"type": "table",
"value": "u2base"
},
{
"id": 7,
"type": "column",
"value": "rating"
},
{
"id": 4,
"type": "value",
"value": "3.5"
},
{
"id": 3,
"type": "value",
"value": "5"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
21
]
},
{
"entity_id": 5,
"token_idxs": [
5
]
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": [
18
]
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-VALUE",
"O"
] |
853
|
school_finance
|
spider:train_spider.json:1888
|
What are the total and average enrollment of all schools?
|
SELECT sum(enrollment) , avg(enrollment) FROM school
|
[
"What",
"are",
"the",
"total",
"and",
"average",
"enrollment",
"of",
"all",
"schools",
"?"
] |
[
{
"id": 1,
"type": "column",
"value": "enrollment"
},
{
"id": 0,
"type": "table",
"value": "school"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
9
]
},
{
"entity_id": 1,
"token_idxs": [
6
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O"
] |
12,834
|
codebase_community
|
bird:dev.json:586
|
Which user added a bounty amount of 50 to the post title mentioning variance?
|
SELECT T3.DisplayName, T1.Title FROM posts AS T1 INNER JOIN votes AS T2 ON T1.Id = T2.PostId INNER JOIN users AS T3 ON T3.Id = T2.UserId WHERE T2.BountyAmount = 50 AND T1.Title LIKE '%variance%'
|
[
"Which",
"user",
"added",
"a",
"bounty",
"amount",
"of",
"50",
"to",
"the",
"post",
"title",
"mentioning",
"variance",
"?"
] |
[
{
"id": 7,
"type": "column",
"value": "bountyamount"
},
{
"id": 0,
"type": "column",
"value": "displayname"
},
{
"id": 9,
"type": "value",
"value": "%variance%"
},
{
"id": 6,
"type": "column",
"value": "userid"
},
{
"id": 10,
"type": "column",
"value": "postid"
},
{
"id": 1,
"type": "column",
"value": "title"
},
{
"id": 2,
"type": "table",
"value": "users"
},
{
"id": 3,
"type": "table",
"value": "posts"
},
{
"id": 4,
"type": "table",
"value": "votes"
},
{
"id": 5,
"type": "column",
"value": "id"
},
{
"id": 8,
"type": "value",
"value": "50"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
3
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": [
5
]
},
{
"entity_id": 7,
"token_idxs": [
7
]
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"O",
"O",
"O"
] |
653
|
retail_world
|
bird:train.json:6405
|
Of the 10 products with the highest unit price, identify by their ID the ones that have generated the least satisfaction.
|
SELECT ProductID FROM Products ORDER BY ReorderLevel ASC, UnitPrice DESC LIMIT 1
|
[
"Of",
"the",
"10",
"products",
"with",
"the",
"highest",
"unit",
"price",
",",
"identify",
"by",
"their",
"ID",
"the",
"ones",
"that",
"have",
"generated",
"the",
"least",
"satisfaction",
"."
] |
[
{
"id": 2,
"type": "column",
"value": "reorderlevel"
},
{
"id": 1,
"type": "column",
"value": "productid"
},
{
"id": 3,
"type": "column",
"value": "unitprice"
},
{
"id": 0,
"type": "table",
"value": "products"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
3
]
},
{
"entity_id": 1,
"token_idxs": [
13
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
7,
8
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O"
] |
15,514
|
chicago_crime
|
bird:train.json:8662
|
How many of the crimes that happened in the street have FBI title "Homicide 1st & 2nd Degree"?
|
SELECT SUM(CASE WHEN T2.location_description = 'STREET' THEN 1 ELSE 0 END) FROM FBI_Code AS T1 INNER JOIN Crime AS T2 ON T2.fbi_code_no = T1.fbi_code_no WHERE T1.title = 'Homicide 1st & 2nd Degree'
|
[
"How",
"many",
"of",
"the",
"crimes",
"that",
"happened",
"in",
"the",
"street",
"have",
"FBI",
"title",
"\"",
"Homicide",
"1st",
"&",
"2nd",
"Degree",
"\"",
"?"
] |
[
{
"id": 3,
"type": "value",
"value": "Homicide 1st & 2nd Degree"
},
{
"id": 7,
"type": "column",
"value": "location_description"
},
{
"id": 4,
"type": "column",
"value": "fbi_code_no"
},
{
"id": 0,
"type": "table",
"value": "fbi_code"
},
{
"id": 8,
"type": "value",
"value": "STREET"
},
{
"id": 1,
"type": "table",
"value": "crime"
},
{
"id": 2,
"type": "column",
"value": "title"
},
{
"id": 5,
"type": "value",
"value": "0"
},
{
"id": 6,
"type": "value",
"value": "1"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
11
]
},
{
"entity_id": 1,
"token_idxs": [
4
]
},
{
"entity_id": 2,
"token_idxs": [
12
]
},
{
"entity_id": 3,
"token_idxs": [
14,
15,
16,
17,
18
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": [
9
]
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-VALUE",
"O",
"B-TABLE",
"B-COLUMN",
"O",
"B-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"O",
"O"
] |
964
|
student_loan
|
bird:train.json:4385
|
Name all students enlisted in the foreign legion.
|
SELECT name FROM enlist WHERE organ = 'foreign_legion'
|
[
"Name",
"all",
"students",
"enlisted",
"in",
"the",
"foreign",
"legion",
"."
] |
[
{
"id": 3,
"type": "value",
"value": "foreign_legion"
},
{
"id": 0,
"type": "table",
"value": "enlist"
},
{
"id": 2,
"type": "column",
"value": "organ"
},
{
"id": 1,
"type": "column",
"value": "name"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
3
]
},
{
"entity_id": 1,
"token_idxs": [
0
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
6,
7
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"O",
"B-VALUE",
"I-VALUE",
"O"
] |
12,863
|
dorm_1
|
spider:train_spider.json:5700
|
Find the numbers of different majors and cities.
|
SELECT count(DISTINCT major) , count(DISTINCT city_code) FROM student
|
[
"Find",
"the",
"numbers",
"of",
"different",
"majors",
"and",
"cities",
"."
] |
[
{
"id": 2,
"type": "column",
"value": "city_code"
},
{
"id": 0,
"type": "table",
"value": "student"
},
{
"id": 1,
"type": "column",
"value": "major"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
5
]
},
{
"entity_id": 2,
"token_idxs": [
7
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"O"
] |
9,577
|
tracking_grants_for_research
|
spider:train_spider.json:4350
|
How many staff does each project has? List the project id and the number in an ascending order.
|
SELECT T1.project_id , count(*) FROM Project_Staff AS T1 JOIN Projects AS T2 ON T1.project_id = T2.project_id GROUP BY T1.project_id ORDER BY count(*) ASC
|
[
"How",
"many",
"staff",
"does",
"each",
"project",
"has",
"?",
"List",
"the",
"project",
"i",
"d",
"and",
"the",
"number",
"in",
"an",
"ascending",
"order",
"."
] |
[
{
"id": 1,
"type": "table",
"value": "project_staff"
},
{
"id": 0,
"type": "column",
"value": "project_id"
},
{
"id": 2,
"type": "table",
"value": "projects"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
11,
12
]
},
{
"entity_id": 1,
"token_idxs": [
2,
5
]
},
{
"entity_id": 2,
"token_idxs": [
10
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-TABLE",
"B-COLUMN",
"I-COLUMN",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O"
] |
9,638
|
machine_repair
|
spider:train_spider.json:2242
|
What are the names of the technicians aged either 36 or 37?
|
SELECT Name FROM technician WHERE Age = 36 OR Age = 37
|
[
"What",
"are",
"the",
"names",
"of",
"the",
"technicians",
"aged",
"either",
"36",
"or",
"37",
"?"
] |
[
{
"id": 0,
"type": "table",
"value": "technician"
},
{
"id": 1,
"type": "column",
"value": "name"
},
{
"id": 2,
"type": "column",
"value": "age"
},
{
"id": 3,
"type": "value",
"value": "36"
},
{
"id": 4,
"type": "value",
"value": "37"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
6
]
},
{
"entity_id": 1,
"token_idxs": [
3
]
},
{
"entity_id": 2,
"token_idxs": [
7
]
},
{
"entity_id": 3,
"token_idxs": [
9
]
},
{
"entity_id": 4,
"token_idxs": [
11
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"B-COLUMN",
"O",
"B-VALUE",
"O",
"B-VALUE",
"O"
] |
11,302
|
talkingdata
|
bird:train.json:1106
|
List at least 15 phone models released under the OPPO brand.
|
SELECT device_model FROM phone_brand_device_model2 WHERE phone_brand = 'OPPO' LIMIT 15
|
[
"List",
"at",
"least",
"15",
"phone",
"models",
"released",
"under",
"the",
"OPPO",
"brand",
"."
] |
[
{
"id": 0,
"type": "table",
"value": "phone_brand_device_model2"
},
{
"id": 1,
"type": "column",
"value": "device_model"
},
{
"id": 2,
"type": "column",
"value": "phone_brand"
},
{
"id": 3,
"type": "value",
"value": "OPPO"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
3
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
6
]
},
{
"entity_id": 3,
"token_idxs": [
9
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": [
11
]
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-VALUE",
"O",
"O"
] |
14,067
|
menu
|
bird:train.json:5542
|
How many menus sponsored by Krogs Fiske Restaurant were created in April 2015?
|
SELECT COUNT(*) FROM Menu WHERE date LIKE '2015-04%' AND sponsor = 'Krogs Fiskerestaurant'
|
[
"How",
"many",
"menus",
"sponsored",
"by",
"Krogs",
"Fiske",
"Restaurant",
"were",
"created",
"in",
"April",
"2015",
"?"
] |
[
{
"id": 4,
"type": "value",
"value": "Krogs Fiskerestaurant"
},
{
"id": 2,
"type": "value",
"value": "2015-04%"
},
{
"id": 3,
"type": "column",
"value": "sponsor"
},
{
"id": 0,
"type": "table",
"value": "menu"
},
{
"id": 1,
"type": "column",
"value": "date"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
11,
12
]
},
{
"entity_id": 3,
"token_idxs": [
3
]
},
{
"entity_id": 4,
"token_idxs": [
5,
6,
7
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"B-COLUMN",
"O",
"B-VALUE",
"I-VALUE",
"I-VALUE",
"O",
"O",
"O",
"B-VALUE",
"I-VALUE",
"O"
] |
4,065
|
video_games
|
bird:train.json:3322
|
How many games were sold on the DS platform on average in the 4 different regions?
|
SELECT SUM(T1.num_sales) * 100000 / 4 FROM region_sales AS T1 INNER JOIN game_platform AS T2 ON T1.game_platform_id = T2.id INNER JOIN platform AS T3 ON T2.platform_id = T3.id WHERE T3.platform_name = 'DS'
|
[
"How",
"many",
"games",
"were",
"sold",
"on",
"the",
"DS",
"platform",
"on",
"average",
"in",
"the",
"4",
"different",
"regions",
"?"
] |
[
{
"id": 9,
"type": "column",
"value": "game_platform_id"
},
{
"id": 1,
"type": "column",
"value": "platform_name"
},
{
"id": 5,
"type": "table",
"value": "game_platform"
},
{
"id": 4,
"type": "table",
"value": "region_sales"
},
{
"id": 6,
"type": "column",
"value": "platform_id"
},
{
"id": 10,
"type": "column",
"value": "num_sales"
},
{
"id": 0,
"type": "table",
"value": "platform"
},
{
"id": 8,
"type": "value",
"value": "100000"
},
{
"id": 2,
"type": "value",
"value": "DS"
},
{
"id": 7,
"type": "column",
"value": "id"
},
{
"id": 3,
"type": "value",
"value": "4"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
8
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
7
]
},
{
"entity_id": 3,
"token_idxs": [
13
]
},
{
"entity_id": 4,
"token_idxs": [
15
]
},
{
"entity_id": 5,
"token_idxs": [
2
]
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-VALUE",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-VALUE",
"O",
"B-TABLE",
"O"
] |
10,706
|
party_people
|
spider:train_spider.json:2045
|
Show the ministers and the time they took and left office, listed by the time they left office.
|
SELECT minister , took_office , left_office FROM party ORDER BY left_office
|
[
"Show",
"the",
"ministers",
"and",
"the",
"time",
"they",
"took",
"and",
"left",
"office",
",",
"listed",
"by",
"the",
"time",
"they",
"left",
"office",
"."
] |
[
{
"id": 2,
"type": "column",
"value": "took_office"
},
{
"id": 3,
"type": "column",
"value": "left_office"
},
{
"id": 1,
"type": "column",
"value": "minister"
},
{
"id": 0,
"type": "table",
"value": "party"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
2
]
},
{
"entity_id": 2,
"token_idxs": [
10
]
},
{
"entity_id": 3,
"token_idxs": [
17,
18
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O"
] |
6,201
|
baseball_1
|
spider:train_spider.json:3652
|
What are the first name and last name of the players whose death record is empty?
|
SELECT name_first , name_last FROM player WHERE death_year = '';
|
[
"What",
"are",
"the",
"first",
"name",
"and",
"last",
"name",
"of",
"the",
"players",
"whose",
"death",
"record",
"is",
"empty",
"?"
] |
[
{
"id": 1,
"type": "column",
"value": "name_first"
},
{
"id": 3,
"type": "column",
"value": "death_year"
},
{
"id": 2,
"type": "column",
"value": "name_last"
},
{
"id": 0,
"type": "table",
"value": "player"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
10
]
},
{
"entity_id": 1,
"token_idxs": [
3,
4
]
},
{
"entity_id": 2,
"token_idxs": [
6,
7
]
},
{
"entity_id": 3,
"token_idxs": [
12
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O"
] |
1,889
|
bakery_1
|
bird:test.json:1511
|
Find the receipt numbers where both Cake and Cookie were bought.
|
SELECT T1.receipt FROM items AS T1 JOIN goods AS T2 ON T1.item = T2.id WHERE T2.food = "Cake" INTERSECT SELECT T1.receipt FROM items AS T1 JOIN goods AS T2 ON T1.item = T2.id WHERE T2.food = "Cookie"
|
[
"Find",
"the",
"receipt",
"numbers",
"where",
"both",
"Cake",
"and",
"Cookie",
"were",
"bought",
"."
] |
[
{
"id": 0,
"type": "column",
"value": "receipt"
},
{
"id": 5,
"type": "column",
"value": "Cookie"
},
{
"id": 1,
"type": "table",
"value": "items"
},
{
"id": 2,
"type": "table",
"value": "goods"
},
{
"id": 3,
"type": "column",
"value": "food"
},
{
"id": 4,
"type": "column",
"value": "Cake"
},
{
"id": 6,
"type": "column",
"value": "item"
},
{
"id": 7,
"type": "column",
"value": "id"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
6
]
},
{
"entity_id": 5,
"token_idxs": [
8
]
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"O",
"O",
"O"
] |
4,082
|
food_inspection
|
bird:train.json:8827
|
Describe the inspection types and violation descriptions under moderate risk category for ART's CAFÉ.
|
SELECT DISTINCT T2.type, T1.description FROM violations AS T1 INNER JOIN inspections AS T2 ON T1.business_id = T2.business_id INNER JOIN businesses AS T3 ON T2.business_id = T3.business_id WHERE T3.name = 'ART''S CAFÉ' AND T1.risk_category = 'Moderate Risk'
|
[
"Describe",
"the",
"inspection",
"types",
"and",
"violation",
"descriptions",
"under",
"moderate",
"risk",
"category",
"for",
"ART",
"'s",
"CAFÉ",
"."
] |
[
{
"id": 8,
"type": "column",
"value": "risk_category"
},
{
"id": 9,
"type": "value",
"value": "Moderate Risk"
},
{
"id": 1,
"type": "column",
"value": "description"
},
{
"id": 4,
"type": "table",
"value": "inspections"
},
{
"id": 5,
"type": "column",
"value": "business_id"
},
{
"id": 2,
"type": "table",
"value": "businesses"
},
{
"id": 3,
"type": "table",
"value": "violations"
},
{
"id": 7,
"type": "value",
"value": "ART'S CAFÉ"
},
{
"id": 0,
"type": "column",
"value": "type"
},
{
"id": 6,
"type": "column",
"value": "name"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
3
]
},
{
"entity_id": 1,
"token_idxs": [
6
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
5
]
},
{
"entity_id": 4,
"token_idxs": [
2
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": [
12,
13,
14
]
},
{
"entity_id": 8,
"token_idxs": [
10
]
},
{
"entity_id": 9,
"token_idxs": [
8,
9
]
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"B-COLUMN",
"O",
"B-TABLE",
"B-COLUMN",
"O",
"B-VALUE",
"I-VALUE",
"B-COLUMN",
"O",
"B-VALUE",
"I-VALUE",
"I-VALUE",
"O"
] |
15,922
|
cs_semester
|
bird:train.json:854
|
Which course is more difficult, Intro to BlockChain or Computer Network?
|
SELECT name FROM course WHERE name = 'Intro to BlockChain' OR name = 'Computer Network' ORDER BY diff DESC LIMIT 1
|
[
"Which",
"course",
"is",
"more",
"difficult",
",",
"Intro",
"to",
"BlockChain",
"or",
"Computer",
"Network",
"?"
] |
[
{
"id": 3,
"type": "value",
"value": "Intro to BlockChain"
},
{
"id": 4,
"type": "value",
"value": "Computer Network"
},
{
"id": 0,
"type": "table",
"value": "course"
},
{
"id": 1,
"type": "column",
"value": "name"
},
{
"id": 2,
"type": "column",
"value": "diff"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
1
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
4
]
},
{
"entity_id": 3,
"token_idxs": [
6,
7,
8
]
},
{
"entity_id": 4,
"token_idxs": [
10,
11
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"B-TABLE",
"O",
"O",
"B-COLUMN",
"O",
"B-VALUE",
"I-VALUE",
"I-VALUE",
"O",
"B-VALUE",
"I-VALUE",
"O"
] |
14,369
|
movies_4
|
bird:train.json:488
|
Look for the movie title with the keyword of "angel".
|
SELECT T1.title FROM movie AS T1 INNER JOIN movie_keywords AS T2 ON T1.movie_id = T2.movie_id INNER JOIN keyword AS T3 ON T2.keyword_id = T3.keyword_id WHERE T3.keyword_name = 'angel'
|
[
"Look",
"for",
"the",
"movie",
"title",
"with",
"the",
"keyword",
"of",
"\"",
"angel",
"\"",
"."
] |
[
{
"id": 5,
"type": "table",
"value": "movie_keywords"
},
{
"id": 2,
"type": "column",
"value": "keyword_name"
},
{
"id": 6,
"type": "column",
"value": "keyword_id"
},
{
"id": 7,
"type": "column",
"value": "movie_id"
},
{
"id": 1,
"type": "table",
"value": "keyword"
},
{
"id": 0,
"type": "column",
"value": "title"
},
{
"id": 3,
"type": "value",
"value": "angel"
},
{
"id": 4,
"type": "table",
"value": "movie"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
4
]
},
{
"entity_id": 1,
"token_idxs": [
7
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
10
]
},
{
"entity_id": 4,
"token_idxs": [
3
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-TABLE",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"O",
"B-VALUE",
"O",
"O"
] |
15,085
|
college_2
|
spider:train_spider.json:1350
|
How many different instructors have taught some course?
|
SELECT COUNT (DISTINCT id) FROM teaches
|
[
"How",
"many",
"different",
"instructors",
"have",
"taught",
"some",
"course",
"?"
] |
[
{
"id": 0,
"type": "table",
"value": "teaches"
},
{
"id": 1,
"type": "column",
"value": "id"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
5
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O"
] |
12,757
|
software_company
|
bird:train.json:8566
|
Among the female customers with an level of education of 3 and below, list their income.
|
SELECT INCOME_K FROM Demog WHERE GEOID IN ( SELECT GEOID FROM Customers WHERE EDUCATIONNUM < 3 AND SEX = 'Female' )
|
[
"Among",
"the",
"female",
"customers",
"with",
"an",
"level",
"of",
"education",
"of",
"3",
"and",
"below",
",",
"list",
"their",
"income",
"."
] |
[
{
"id": 4,
"type": "column",
"value": "educationnum"
},
{
"id": 3,
"type": "table",
"value": "customers"
},
{
"id": 1,
"type": "column",
"value": "income_k"
},
{
"id": 7,
"type": "value",
"value": "Female"
},
{
"id": 0,
"type": "table",
"value": "demog"
},
{
"id": 2,
"type": "column",
"value": "geoid"
},
{
"id": 6,
"type": "column",
"value": "sex"
},
{
"id": 5,
"type": "value",
"value": "3"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
16
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
3
]
},
{
"entity_id": 4,
"token_idxs": [
8
]
},
{
"entity_id": 5,
"token_idxs": [
10
]
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": [
2
]
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-VALUE",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"B-VALUE",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O"
] |
12,461
|
european_football_2
|
bird:dev.json:1103
|
What was the overall rating for Aaron Mooy on 2016/2/4?
|
SELECT t2.overall_rating FROM Player AS t1 INNER JOIN Player_Attributes AS t2 ON t1.player_api_id = t2.player_api_id WHERE SUBSTR(t2.`date`, 1, 10) = '2016-02-04' AND t1.player_name = 'Aaron Mooy'
|
[
"What",
"was",
"the",
"overall",
"rating",
"for",
"Aaron",
"Mooy",
"on",
"2016/2/4",
"?"
] |
[
{
"id": 2,
"type": "table",
"value": "player_attributes"
},
{
"id": 0,
"type": "column",
"value": "overall_rating"
},
{
"id": 3,
"type": "column",
"value": "player_api_id"
},
{
"id": 5,
"type": "column",
"value": "player_name"
},
{
"id": 4,
"type": "value",
"value": "2016-02-04"
},
{
"id": 6,
"type": "value",
"value": "Aaron Mooy"
},
{
"id": 1,
"type": "table",
"value": "player"
},
{
"id": 7,
"type": "column",
"value": "date"
},
{
"id": 9,
"type": "value",
"value": "10"
},
{
"id": 8,
"type": "value",
"value": "1"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
1
]
},
{
"entity_id": 2,
"token_idxs": [
4
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": [
9
]
},
{
"entity_id": 6,
"token_idxs": [
6
]
},
{
"entity_id": 7,
"token_idxs": [
8
]
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"B-TABLE",
"O",
"O",
"B-TABLE",
"O",
"B-VALUE",
"O",
"B-COLUMN",
"B-COLUMN",
"O"
] |
14,196
|
school_player
|
spider:train_spider.json:4874
|
Find the team of the player of the highest age.
|
SELECT Team FROM player ORDER BY Age DESC LIMIT 1
|
[
"Find",
"the",
"team",
"of",
"the",
"player",
"of",
"the",
"highest",
"age",
"."
] |
[
{
"id": 0,
"type": "table",
"value": "player"
},
{
"id": 1,
"type": "column",
"value": "team"
},
{
"id": 2,
"type": "column",
"value": "age"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
5
]
},
{
"entity_id": 1,
"token_idxs": [
2
]
},
{
"entity_id": 2,
"token_idxs": [
9
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"B-COLUMN",
"O"
] |
13,899
|
music_1
|
spider:train_spider.json:3575
|
List the name and gender for all artists who released songs in March.
|
SELECT T1.artist_name , T1.gender FROM artist AS T1 JOIN song AS T2 ON T1.artist_name = T2.artist_name WHERE T2.releasedate LIKE "%Mar%"
|
[
"List",
"the",
"name",
"and",
"gender",
"for",
"all",
"artists",
"who",
"released",
"songs",
"in",
"March",
"."
] |
[
{
"id": 0,
"type": "column",
"value": "artist_name"
},
{
"id": 4,
"type": "column",
"value": "releasedate"
},
{
"id": 1,
"type": "column",
"value": "gender"
},
{
"id": 2,
"type": "table",
"value": "artist"
},
{
"id": 5,
"type": "column",
"value": "%Mar%"
},
{
"id": 3,
"type": "table",
"value": "song"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": [
4
]
},
{
"entity_id": 2,
"token_idxs": [
7
]
},
{
"entity_id": 3,
"token_idxs": [
10
]
},
{
"entity_id": 4,
"token_idxs": [
9
]
},
{
"entity_id": 5,
"token_idxs": [
12
]
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"B-COLUMN",
"B-TABLE",
"O",
"B-COLUMN",
"O"
] |
14,114
|
genes
|
bird:train.json:2494
|
What are the functions of the pair of genes that have the lowest expression correlation score?a
|
SELECT T1.Function FROM Genes AS T1 INNER JOIN Interactions AS T2 ON T1.GeneID = T2.GeneID1 ORDER BY T2.Expression_Corr ASC LIMIT 1
|
[
"What",
"are",
"the",
"functions",
"of",
"the",
"pair",
"of",
"genes",
"that",
"have",
"the",
"lowest",
"expression",
"correlation",
"score?a"
] |
[
{
"id": 3,
"type": "column",
"value": "expression_corr"
},
{
"id": 2,
"type": "table",
"value": "interactions"
},
{
"id": 0,
"type": "column",
"value": "function"
},
{
"id": 5,
"type": "column",
"value": "geneid1"
},
{
"id": 4,
"type": "column",
"value": "geneid"
},
{
"id": 1,
"type": "table",
"value": "genes"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
3
]
},
{
"entity_id": 1,
"token_idxs": [
8
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
13,
14
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O"
] |
1,584
|
soccer_2016
|
bird:train.json:1976
|
Who is the eldest player and where did he/she come from?
|
SELECT T1.Player_Name, T2.Country_Name FROM Player AS T1 INNER JOIN Country AS T2 ON T1.Country_Name = T2.Country_Id ORDER BY T1.DOB LIMIT 1
|
[
"Who",
"is",
"the",
"eldest",
"player",
"and",
"where",
"did",
"he",
"/",
"she",
"come",
"from",
"?"
] |
[
{
"id": 1,
"type": "column",
"value": "country_name"
},
{
"id": 0,
"type": "column",
"value": "player_name"
},
{
"id": 5,
"type": "column",
"value": "country_id"
},
{
"id": 3,
"type": "table",
"value": "country"
},
{
"id": 2,
"type": "table",
"value": "player"
},
{
"id": 4,
"type": "column",
"value": "dob"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
4
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O"
] |
3,652
|
language_corpus
|
bird:train.json:5727
|
Calculate the average number of repetitions in the pairs of words in which the first word id is number 34.
|
SELECT CAST(SUM(CASE WHEN w1st = 34 THEN 1 ELSE 0 END) AS REAL) / COUNT(w1st) FROM biwords
|
[
"Calculate",
"the",
"average",
"number",
"of",
"repetitions",
"in",
"the",
"pairs",
"of",
"words",
"in",
"which",
"the",
"first",
"word",
"i",
"d",
"is",
"number",
"34",
"."
] |
[
{
"id": 0,
"type": "table",
"value": "biwords"
},
{
"id": 1,
"type": "column",
"value": "w1st"
},
{
"id": 4,
"type": "value",
"value": "34"
},
{
"id": 2,
"type": "value",
"value": "0"
},
{
"id": 3,
"type": "value",
"value": "1"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
10
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
20
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-VALUE",
"O"
] |
6,371
|
airline
|
bird:train.json:5872
|
Please list any three airports with their codes.
|
SELECT Code, Description FROM Airports LIMIT 3
|
[
"Please",
"list",
"any",
"three",
"airports",
"with",
"their",
"codes",
"."
] |
[
{
"id": 2,
"type": "column",
"value": "description"
},
{
"id": 0,
"type": "table",
"value": "airports"
},
{
"id": 1,
"type": "column",
"value": "code"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
4
]
},
{
"entity_id": 1,
"token_idxs": [
7
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"B-COLUMN",
"O"
] |
4,345
|
legislator
|
bird:train.json:4839
|
What is the party and state of the legislator that has an open secrets ID of N00003689 and thomas ID of 186?
|
SELECT T2.party, T2.state FROM current AS T1 INNER JOIN `current-terms` AS T2 ON T1.bioguide_id = T2.bioguide WHERE T1.opensecrets_id = 'N00003689' AND T1.thomas_id = 186 GROUP BY T2.party, T2.state
|
[
"What",
"is",
"the",
"party",
"and",
"state",
"of",
"the",
"legislator",
"that",
"has",
"an",
"open",
"secrets",
"ID",
"of",
"N00003689",
"and",
"thomas",
"ID",
"of",
"186",
"?"
] |
[
{
"id": 6,
"type": "column",
"value": "opensecrets_id"
},
{
"id": 3,
"type": "table",
"value": "current-terms"
},
{
"id": 4,
"type": "column",
"value": "bioguide_id"
},
{
"id": 7,
"type": "value",
"value": "N00003689"
},
{
"id": 8,
"type": "column",
"value": "thomas_id"
},
{
"id": 5,
"type": "column",
"value": "bioguide"
},
{
"id": 2,
"type": "table",
"value": "current"
},
{
"id": 0,
"type": "column",
"value": "party"
},
{
"id": 1,
"type": "column",
"value": "state"
},
{
"id": 9,
"type": "value",
"value": "186"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
3
]
},
{
"entity_id": 1,
"token_idxs": [
5
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": [
12,
13,
14
]
},
{
"entity_id": 7,
"token_idxs": [
16
]
},
{
"entity_id": 8,
"token_idxs": [
18,
19
]
},
{
"entity_id": 9,
"token_idxs": [
21
]
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"I-COLUMN",
"O",
"B-VALUE",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"B-VALUE",
"O"
] |
14,024
|
customer_complaints
|
spider:train_spider.json:5787
|
Return the description of the product called "Chocolate".
|
SELECT product_description FROM products WHERE product_name = "Chocolate"
|
[
"Return",
"the",
"description",
"of",
"the",
"product",
"called",
"\"",
"Chocolate",
"\"",
"."
] |
[
{
"id": 1,
"type": "column",
"value": "product_description"
},
{
"id": 2,
"type": "column",
"value": "product_name"
},
{
"id": 3,
"type": "column",
"value": "Chocolate"
},
{
"id": 0,
"type": "table",
"value": "products"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
1
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": [
3,
4,
5
]
},
{
"entity_id": 6,
"token_idxs": [
7
]
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O"
] |
11,216
|
formula_1
|
spider:train_spider.json:2217
|
Find the names of Japanese constructors that have once earned more than 5 points?
|
SELECT T1.name FROM constructors AS T1 JOIN constructorstandings AS T2 ON T1.constructorid = T2.constructorid WHERE T1.nationality = "Japanese" AND T2.points > 5
|
[
"Find",
"the",
"names",
"of",
"Japanese",
"constructors",
"that",
"have",
"once",
"earned",
"more",
"than",
"5",
"points",
"?"
] |
[
{
"id": 2,
"type": "table",
"value": "constructorstandings"
},
{
"id": 3,
"type": "column",
"value": "constructorid"
},
{
"id": 1,
"type": "table",
"value": "constructors"
},
{
"id": 4,
"type": "column",
"value": "nationality"
},
{
"id": 5,
"type": "column",
"value": "Japanese"
},
{
"id": 6,
"type": "column",
"value": "points"
},
{
"id": 0,
"type": "column",
"value": "name"
},
{
"id": 7,
"type": "value",
"value": "5"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": [
5
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": [
4
]
},
{
"entity_id": 6,
"token_idxs": [
13
]
},
{
"entity_id": 7,
"token_idxs": [
12
]
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"O",
"B-VALUE",
"B-COLUMN",
"O"
] |
1,638
|
beer_factory
|
bird:train.json:5267
|
What is the name of the brand of the beer with the shortest brewed history?
|
SELECT BrandName FROM rootbeerbrand ORDER BY FirstBrewedYear DESC LIMIT 1
|
[
"What",
"is",
"the",
"name",
"of",
"the",
"brand",
"of",
"the",
"beer",
"with",
"the",
"shortest",
"brewed",
"history",
"?"
] |
[
{
"id": 2,
"type": "column",
"value": "firstbrewedyear"
},
{
"id": 0,
"type": "table",
"value": "rootbeerbrand"
},
{
"id": 1,
"type": "column",
"value": "brandname"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
11
]
},
{
"entity_id": 1,
"token_idxs": [
3
]
},
{
"entity_id": 2,
"token_idxs": [
5
]
},
{
"entity_id": 3,
"token_idxs": [
8
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O"
] |
6,790
|
workshop_paper
|
spider:train_spider.json:5816
|
List the authors of submissions in ascending order of scores.
|
SELECT Author FROM submission ORDER BY Scores ASC
|
[
"List",
"the",
"authors",
"of",
"submissions",
"in",
"ascending",
"order",
"of",
"scores",
"."
] |
[
{
"id": 0,
"type": "table",
"value": "submission"
},
{
"id": 1,
"type": "column",
"value": "author"
},
{
"id": 2,
"type": "column",
"value": "scores"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
4
]
},
{
"entity_id": 1,
"token_idxs": [
2
]
},
{
"entity_id": 2,
"token_idxs": [
9
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O"
] |
5,421
|
customers_and_products_contacts
|
spider:train_spider.json:5666
|
What are the name and phone of the customer with the most ordered product quantity?
|
SELECT T1.customer_name , T1.customer_phone FROM customers AS T1 JOIN customer_orders AS T2 ON T1.customer_id = T2.customer_id JOIN order_items AS T3 ON T3.order_id = T2.order_id GROUP BY T1.customer_id ORDER BY sum(T3.order_quantity) DESC LIMIT 1
|
[
"What",
"are",
"the",
"name",
"and",
"phone",
"of",
"the",
"customer",
"with",
"the",
"most",
"ordered",
"product",
"quantity",
"?"
] |
[
{
"id": 5,
"type": "table",
"value": "customer_orders"
},
{
"id": 2,
"type": "column",
"value": "customer_phone"
},
{
"id": 7,
"type": "column",
"value": "order_quantity"
},
{
"id": 1,
"type": "column",
"value": "customer_name"
},
{
"id": 0,
"type": "column",
"value": "customer_id"
},
{
"id": 3,
"type": "table",
"value": "order_items"
},
{
"id": 4,
"type": "table",
"value": "customers"
},
{
"id": 6,
"type": "column",
"value": "order_id"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
5,
6,
7
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
8
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": [
12
]
},
{
"entity_id": 7,
"token_idxs": [
14
]
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"I-COLUMN",
"B-TABLE",
"O",
"O",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"O"
] |
5,138
|
cre_Doc_and_collections
|
bird:test.json:684
|
What is the number of child documents for each parent document, and what are the ids of the parent documents?
|
SELECT T2.Document_Object_ID , count(*) FROM Document_Objects AS T1 JOIN Document_Objects AS T2 ON T1.Parent_Document_Object_ID = T2.Document_Object_ID GROUP BY T2.Document_Object_ID;
|
[
"What",
"is",
"the",
"number",
"of",
"child",
"documents",
"for",
"each",
"parent",
"document",
",",
"and",
"what",
"are",
"the",
"ids",
"of",
"the",
"parent",
"documents",
"?"
] |
[
{
"id": 2,
"type": "column",
"value": "parent_document_object_id"
},
{
"id": 0,
"type": "column",
"value": "document_object_id"
},
{
"id": 1,
"type": "table",
"value": "document_objects"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
6
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
9
]
},
{
"entity_id": 4,
"token_idxs": [
11
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O"
] |
10,958
|
election
|
spider:train_spider.json:2769
|
Find the parties associated with the delegates from district 1. Who served as governors of the parties?
|
SELECT T2.Governor FROM election AS T1 JOIN party AS T2 ON T1.Party = T2.Party_ID WHERE T1.District = 1
|
[
"Find",
"the",
"parties",
"associated",
"with",
"the",
"delegates",
"from",
"district",
"1",
".",
"Who",
"served",
"as",
"governors",
"of",
"the",
"parties",
"?"
] |
[
{
"id": 0,
"type": "column",
"value": "governor"
},
{
"id": 1,
"type": "table",
"value": "election"
},
{
"id": 3,
"type": "column",
"value": "district"
},
{
"id": 6,
"type": "column",
"value": "party_id"
},
{
"id": 2,
"type": "table",
"value": "party"
},
{
"id": 5,
"type": "column",
"value": "party"
},
{
"id": 4,
"type": "value",
"value": "1"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
14
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
8
]
},
{
"entity_id": 4,
"token_idxs": [
9
]
},
{
"entity_id": 5,
"token_idxs": [
2
]
},
{
"entity_id": 6,
"token_idxs": [
17
]
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"B-VALUE",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-COLUMN",
"O"
] |
7,144
|
match_season
|
spider:train_spider.json:1072
|
Show the season, the player, and the name of the country that player belongs to.
|
SELECT T2.Season , T2.Player , T1.Country_name FROM country AS T1 JOIN match_season AS T2 ON T1.Country_id = T2.Country
|
[
"Show",
"the",
"season",
",",
"the",
"player",
",",
"and",
"the",
"name",
"of",
"the",
"country",
"that",
"player",
"belongs",
"to",
"."
] |
[
{
"id": 2,
"type": "column",
"value": "country_name"
},
{
"id": 4,
"type": "table",
"value": "match_season"
},
{
"id": 5,
"type": "column",
"value": "country_id"
},
{
"id": 3,
"type": "table",
"value": "country"
},
{
"id": 6,
"type": "column",
"value": "country"
},
{
"id": 0,
"type": "column",
"value": "season"
},
{
"id": 1,
"type": "column",
"value": "player"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": [
5
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": [
12
]
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"O"
] |
7,177
|
european_football_2
|
bird:dev.json:1114
|
What was the average overall rating for Marko Arnautovic from 2007/2/22 to 2016/4/21?
|
SELECT CAST(SUM(t2.overall_rating) AS REAL) / COUNT(t2.id) FROM Player AS t1 INNER JOIN Player_Attributes AS t2 ON t1.player_fifa_api_id = t2.player_fifa_api_id WHERE t1.player_name = 'Marko Arnautovic' AND SUBSTR(t2.`date`, 1, 10) BETWEEN '2007-02-22' AND '2016-04-21'
|
[
"What",
"was",
"the",
"average",
"overall",
"rating",
"for",
"Marko",
"Arnautovic",
"from",
"2007/2/22",
"to",
"2016/4/21",
"?"
] |
[
{
"id": 2,
"type": "column",
"value": "player_fifa_api_id"
},
{
"id": 1,
"type": "table",
"value": "player_attributes"
},
{
"id": 4,
"type": "value",
"value": "Marko Arnautovic"
},
{
"id": 11,
"type": "column",
"value": "overall_rating"
},
{
"id": 3,
"type": "column",
"value": "player_name"
},
{
"id": 5,
"type": "value",
"value": "2007-02-22"
},
{
"id": 6,
"type": "value",
"value": "2016-04-21"
},
{
"id": 0,
"type": "table",
"value": "player"
},
{
"id": 8,
"type": "column",
"value": "date"
},
{
"id": 7,
"type": "column",
"value": "id"
},
{
"id": 10,
"type": "value",
"value": "10"
},
{
"id": 9,
"type": "value",
"value": "1"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
7,
8
]
},
{
"entity_id": 5,
"token_idxs": [
10
]
},
{
"entity_id": 6,
"token_idxs": [
12
]
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": [
4,
5
]
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"B-VALUE",
"I-VALUE",
"O",
"B-VALUE",
"O",
"B-VALUE",
"O"
] |
7,206
|
customers_card_transactions
|
spider:train_spider.json:718
|
Return the id and full name of the customer who has the fewest accounts.
|
SELECT T1.customer_id , T2.customer_first_name , T2.customer_last_name FROM Customers_cards AS T1 JOIN Customers AS T2 ON T1.customer_id = T2.customer_id GROUP BY T1.customer_id ORDER BY count(*) ASC LIMIT 1
|
[
"Return",
"the",
"i",
"d",
"and",
"full",
"name",
"of",
"the",
"customer",
"who",
"has",
"the",
"fewest",
"accounts",
"."
] |
[
{
"id": 1,
"type": "column",
"value": "customer_first_name"
},
{
"id": 2,
"type": "column",
"value": "customer_last_name"
},
{
"id": 3,
"type": "table",
"value": "customers_cards"
},
{
"id": 0,
"type": "column",
"value": "customer_id"
},
{
"id": 4,
"type": "table",
"value": "customers"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2,
3
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
9
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"O"
] |
15,627
|
headphone_store
|
bird:test.json:926
|
Find the headphone class that does not contain more than two headphones.
|
SELECT CLASS FROM headphone GROUP BY CLASS HAVING count(*) > 2
|
[
"Find",
"the",
"headphone",
"class",
"that",
"does",
"not",
"contain",
"more",
"than",
"two",
"headphones",
"."
] |
[
{
"id": 0,
"type": "table",
"value": "headphone"
},
{
"id": 1,
"type": "column",
"value": "class"
},
{
"id": 2,
"type": "value",
"value": "2"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
3
]
},
{
"entity_id": 1,
"token_idxs": [
10
]
},
{
"entity_id": 2,
"token_idxs": [
7
]
},
{
"entity_id": 3,
"token_idxs": [
12
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": [
6
]
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"B-VALUE",
"O",
"O",
"B-COLUMN",
"O",
"O"
] |
6,232
|
airline
|
bird:train.json:5854
|
How many flights departed on time on 8/1/2018?
|
SELECT COUNT(*) FROM Airlines WHERE FL_DATE = '2018/8/1' AND DEP_DELAY <= 0
|
[
"How",
"many",
"flights",
"departed",
"on",
"time",
"on",
"8/1/2018",
"?"
] |
[
{
"id": 3,
"type": "column",
"value": "dep_delay"
},
{
"id": 0,
"type": "table",
"value": "airlines"
},
{
"id": 2,
"type": "value",
"value": "2018/8/1"
},
{
"id": 1,
"type": "column",
"value": "fl_date"
},
{
"id": 4,
"type": "value",
"value": "0"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
2
]
},
{
"entity_id": 2,
"token_idxs": [
7
]
},
{
"entity_id": 3,
"token_idxs": [
3
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"B-COLUMN",
"O",
"O",
"O",
"B-VALUE",
"O"
] |
14,242
|
retail_world
|
bird:train.json:6652
|
Name the shipper which had the most shipments in first quarter of 1998.
|
SELECT T1.CompanyName FROM Shippers AS T1 INNER JOIN Orders AS T2 ON T1.ShipperID = T2.ShipVia WHERE STRFTIME('%Y', T2.ShippedDate) = '1998' GROUP BY T1.CompanyName ORDER BY COUNT(T2.OrderID) DESC LIMIT 1
|
[
"Name",
"the",
"shipper",
"which",
"had",
"the",
"most",
"shipments",
"in",
"first",
"quarter",
"of",
"1998",
"."
] |
[
{
"id": 0,
"type": "column",
"value": "companyname"
},
{
"id": 7,
"type": "column",
"value": "shippeddate"
},
{
"id": 4,
"type": "column",
"value": "shipperid"
},
{
"id": 1,
"type": "table",
"value": "shippers"
},
{
"id": 5,
"type": "column",
"value": "shipvia"
},
{
"id": 8,
"type": "column",
"value": "orderid"
},
{
"id": 2,
"type": "table",
"value": "orders"
},
{
"id": 3,
"type": "value",
"value": "1998"
},
{
"id": 6,
"type": "value",
"value": "%Y"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
2
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
12
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-VALUE",
"O"
] |
2,607
|
college_2
|
spider:train_spider.json:1341
|
Count the number of courses in the Physics department.
|
SELECT count(DISTINCT course_id) FROM course WHERE dept_name = 'Physics'
|
[
"Count",
"the",
"number",
"of",
"courses",
"in",
"the",
"Physics",
"department",
"."
] |
[
{
"id": 1,
"type": "column",
"value": "dept_name"
},
{
"id": 3,
"type": "column",
"value": "course_id"
},
{
"id": 2,
"type": "value",
"value": "Physics"
},
{
"id": 0,
"type": "table",
"value": "course"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
4
]
},
{
"entity_id": 1,
"token_idxs": [
8
]
},
{
"entity_id": 2,
"token_idxs": [
7
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"B-VALUE",
"B-COLUMN",
"O"
] |
6,797
|
behavior_monitoring
|
spider:train_spider.json:3086
|
How many assessment notes are there in total?
|
SELECT count(*) FROM ASSESSMENT_NOTES
|
[
"How",
"many",
"assessment",
"notes",
"are",
"there",
"in",
"total",
"?"
] |
[
{
"id": 0,
"type": "table",
"value": "assessment_notes"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2,
3
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"I-TABLE",
"O",
"O",
"O",
"O",
"O"
] |
5,313
|
movies_4
|
bird:train.json:477
|
What are the genres of Sky Captain and the World of Tomorrow?
|
SELECT T3.genre_name FROM movie AS T1 INNER JOIN movie_genres AS T2 ON T1.movie_id = T2.movie_id INNER JOIN genre AS T3 ON T2.genre_id = T3.genre_id WHERE T1.title = 'Sky Captain and the World of Tomorrow'
|
[
"What",
"are",
"the",
"genres",
"of",
"Sky",
"Captain",
"and",
"the",
"World",
"of",
"Tomorrow",
"?"
] |
[
{
"id": 3,
"type": "value",
"value": "Sky Captain and the World of Tomorrow"
},
{
"id": 5,
"type": "table",
"value": "movie_genres"
},
{
"id": 0,
"type": "column",
"value": "genre_name"
},
{
"id": 6,
"type": "column",
"value": "genre_id"
},
{
"id": 7,
"type": "column",
"value": "movie_id"
},
{
"id": 1,
"type": "table",
"value": "genre"
},
{
"id": 2,
"type": "column",
"value": "title"
},
{
"id": 4,
"type": "table",
"value": "movie"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
3
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
5,
6,
7,
8,
9,
10,
11
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-TABLE",
"O",
"B-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"O"
] |
9,863
|
formula_1
|
bird:dev.json:972
|
Which drivers who were born in 1971 and has the fastest lap time on the race? Give id and code of these drivers.
|
SELECT T2.driverId, T2.code FROM results AS T1 INNER JOIN drivers AS T2 on T1.driverId = T2.driverId WHERE STRFTIME('%Y', T2.dob) = '1971' AND T1.fastestLapTime IS NOT NULL
|
[
"Which",
"drivers",
"who",
"were",
"born",
"in",
"1971",
"and",
"has",
"the",
"fastest",
"lap",
"time",
"on",
"the",
"race",
"?",
"Give",
"i",
"d",
"and",
"code",
"of",
"these",
"drivers",
"."
] |
[
{
"id": 5,
"type": "column",
"value": "fastestlaptime"
},
{
"id": 0,
"type": "column",
"value": "driverid"
},
{
"id": 2,
"type": "table",
"value": "results"
},
{
"id": 3,
"type": "table",
"value": "drivers"
},
{
"id": 1,
"type": "column",
"value": "code"
},
{
"id": 4,
"type": "value",
"value": "1971"
},
{
"id": 7,
"type": "column",
"value": "dob"
},
{
"id": 6,
"type": "value",
"value": "%Y"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
1,
18,
19
]
},
{
"entity_id": 1,
"token_idxs": [
21
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
24
]
},
{
"entity_id": 4,
"token_idxs": [
6
]
},
{
"entity_id": 5,
"token_idxs": [
10,
11,
12
]
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"B-VALUE",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"I-COLUMN",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O"
] |
13,130
|
music_2
|
spider:train_spider.json:5247
|
What types of vocals are used in the song "Badlands"?
|
SELECT TYPE FROM vocals AS T1 JOIN songs AS T2 ON T1.songid = T2.songid WHERE title = "Badlands"
|
[
"What",
"types",
"of",
"vocals",
"are",
"used",
"in",
"the",
"song",
"\"",
"Badlands",
"\"",
"?"
] |
[
{
"id": 4,
"type": "column",
"value": "Badlands"
},
{
"id": 1,
"type": "table",
"value": "vocals"
},
{
"id": 5,
"type": "column",
"value": "songid"
},
{
"id": 2,
"type": "table",
"value": "songs"
},
{
"id": 3,
"type": "column",
"value": "title"
},
{
"id": 0,
"type": "column",
"value": "type"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
1
]
},
{
"entity_id": 1,
"token_idxs": [
3
]
},
{
"entity_id": 2,
"token_idxs": [
8
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
10
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"B-COLUMN",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"B-COLUMN",
"O",
"O"
] |
7,449
|
cookbook
|
bird:train.json:8893
|
How many ingredients are there in the recipe that is best in helping your body's natural defence against illness and infection?
|
SELECT COUNT(*) FROM Nutrition AS T1 INNER JOIN Quantity AS T2 ON T1.recipe_id = T2.recipe_id WHERE T1.vitamin_a > 0
|
[
"How",
"many",
"ingredients",
"are",
"there",
"in",
"the",
"recipe",
"that",
"is",
"best",
"in",
"helping",
"your",
"body",
"'s",
"natural",
"defence",
"against",
"illness",
"and",
"infection",
"?"
] |
[
{
"id": 0,
"type": "table",
"value": "nutrition"
},
{
"id": 2,
"type": "column",
"value": "vitamin_a"
},
{
"id": 4,
"type": "column",
"value": "recipe_id"
},
{
"id": 1,
"type": "table",
"value": "quantity"
},
{
"id": 3,
"type": "value",
"value": "0"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
21
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
7
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"O"
] |
3,432
|
university
|
bird:train.json:8088
|
Which country is University of Veterinary Medicine Vienna located in? Give its country id.
|
SELECT country_id FROM university WHERE university_name = 'University of Veterinary Medicine Vienna'
|
[
"Which",
"country",
"is",
"University",
"of",
"Veterinary",
"Medicine",
"Vienna",
"located",
"in",
"?",
"Give",
"its",
"country",
"i",
"d."
] |
[
{
"id": 3,
"type": "value",
"value": "University of Veterinary Medicine Vienna"
},
{
"id": 2,
"type": "column",
"value": "university_name"
},
{
"id": 0,
"type": "table",
"value": "university"
},
{
"id": 1,
"type": "column",
"value": "country_id"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
3
]
},
{
"entity_id": 1,
"token_idxs": [
13,
14,
15
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
4,
5,
6,
7
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-TABLE",
"B-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"O",
"O",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"I-COLUMN"
] |
2,677
|
movie_3
|
bird:train.json:9394
|
Who are the actors starred in the film "Bound Cheaper"?
|
SELECT T1.first_name, T1.last_name FROM actor AS T1 INNER JOIN film_actor AS T2 ON T1.actor_id = T2.actor_id INNER JOIN film AS T3 ON T2.film_id = T3.film_id WHERE T3.title = 'BOUND CHEAPER'
|
[
"Who",
"are",
"the",
"actors",
"starred",
"in",
"the",
"film",
"\"",
"Bound",
"Cheaper",
"\"",
"?"
] |
[
{
"id": 4,
"type": "value",
"value": "BOUND CHEAPER"
},
{
"id": 0,
"type": "column",
"value": "first_name"
},
{
"id": 6,
"type": "table",
"value": "film_actor"
},
{
"id": 1,
"type": "column",
"value": "last_name"
},
{
"id": 8,
"type": "column",
"value": "actor_id"
},
{
"id": 7,
"type": "column",
"value": "film_id"
},
{
"id": 3,
"type": "column",
"value": "title"
},
{
"id": 5,
"type": "table",
"value": "actor"
},
{
"id": 2,
"type": "table",
"value": "film"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
7
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
9,
10
]
},
{
"entity_id": 5,
"token_idxs": [
3
]
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"B-TABLE",
"O",
"B-VALUE",
"I-VALUE",
"O",
"O"
] |
8,238
|
baseball_1
|
spider:train_spider.json:3649
|
List three countries which are the origins of the least players.
|
SELECT birth_country FROM player GROUP BY birth_country ORDER BY count(*) ASC LIMIT 3;
|
[
"List",
"three",
"countries",
"which",
"are",
"the",
"origins",
"of",
"the",
"least",
"players",
"."
] |
[
{
"id": 1,
"type": "column",
"value": "birth_country"
},
{
"id": 0,
"type": "table",
"value": "player"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
9
]
},
{
"entity_id": 1,
"token_idxs": [
4,
5
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
7
]
},
{
"entity_id": 4,
"token_idxs": [
11
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"O",
"O",
"B-TABLE",
"O",
"O"
] |
2,704
|
farm
|
spider:train_spider.json:32
|
List the official name and status of the city with the largest population.
|
SELECT Official_Name , Status FROM city ORDER BY Population DESC LIMIT 1
|
[
"List",
"the",
"official",
"name",
"and",
"status",
"of",
"the",
"city",
"with",
"the",
"largest",
"population",
"."
] |
[
{
"id": 1,
"type": "column",
"value": "official_name"
},
{
"id": 3,
"type": "column",
"value": "population"
},
{
"id": 2,
"type": "column",
"value": "status"
},
{
"id": 0,
"type": "table",
"value": "city"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
8
]
},
{
"entity_id": 1,
"token_idxs": [
2,
3
]
},
{
"entity_id": 2,
"token_idxs": [
5
]
},
{
"entity_id": 3,
"token_idxs": [
12
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"B-COLUMN",
"O"
] |
10,485
|
movies_4
|
bird:train.json:556
|
What keyword can the user use to search for the movie Finding Nemo?
|
SELECT T3.keyword_name FROM movie AS T1 INNER JOIN movie_keywords AS T2 ON T1.movie_id = T2.movie_id INNER JOIN keyword AS T3 ON T2.keyword_id = T3.keyword_id WHERE T1.title = 'Finding Nemo'
|
[
"What",
"keyword",
"can",
"the",
"user",
"use",
"to",
"search",
"for",
"the",
"movie",
"Finding",
"Nemo",
"?"
] |
[
{
"id": 5,
"type": "table",
"value": "movie_keywords"
},
{
"id": 0,
"type": "column",
"value": "keyword_name"
},
{
"id": 3,
"type": "value",
"value": "Finding Nemo"
},
{
"id": 6,
"type": "column",
"value": "keyword_id"
},
{
"id": 7,
"type": "column",
"value": "movie_id"
},
{
"id": 1,
"type": "table",
"value": "keyword"
},
{
"id": 2,
"type": "column",
"value": "title"
},
{
"id": 4,
"type": "table",
"value": "movie"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
1
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
11,
12
]
},
{
"entity_id": 4,
"token_idxs": [
10
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"B-VALUE",
"I-VALUE",
"O"
] |
10,684
|
phone_1
|
spider:train_spider.json:1023
|
the names of models that launched between 2002 and 2004.
|
SELECT Model_name FROM chip_model WHERE Launch_year BETWEEN 2002 AND 2004;
|
[
"the",
"names",
"of",
"models",
"that",
"launched",
"between",
"2002",
"and",
"2004",
"."
] |
[
{
"id": 2,
"type": "column",
"value": "launch_year"
},
{
"id": 0,
"type": "table",
"value": "chip_model"
},
{
"id": 1,
"type": "column",
"value": "model_name"
},
{
"id": 3,
"type": "value",
"value": "2002"
},
{
"id": 4,
"type": "value",
"value": "2004"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
6
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O"
] |
3,527
|
soccer_2016
|
bird:train.json:2010
|
List the name of England players.
|
SELECT T1.Player_Name FROM Player AS T1 INNER JOIN Country AS T2 ON T1.Country_Name = T2.Country_ID WHERE T2.Country_Name = 'England'
|
[
"List",
"the",
"name",
"of",
"England",
"players",
"."
] |
[
{
"id": 3,
"type": "column",
"value": "country_name"
},
{
"id": 0,
"type": "column",
"value": "player_name"
},
{
"id": 5,
"type": "column",
"value": "country_id"
},
{
"id": 2,
"type": "table",
"value": "country"
},
{
"id": 4,
"type": "value",
"value": "England"
},
{
"id": 1,
"type": "table",
"value": "player"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": [
5
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
4
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"O",
"B-VALUE",
"B-TABLE",
"O"
] |
8,085
|
retails
|
bird:train.json:6870
|
What is the lowest supply cost for the part "hot spring dodger dim light"?
|
SELECT MIN(T1.ps_supplycost) FROM partsupp AS T1 INNER JOIN part AS T2 ON T1.ps_partkey = T2.p_partkey WHERE T2.p_name = 'hot spring dodger dim light'
|
[
"What",
"is",
"the",
"lowest",
"supply",
"cost",
"for",
"the",
"part",
"\"",
"hot",
"spring",
"dodger",
"dim",
"light",
"\"",
"?"
] |
[
{
"id": 3,
"type": "value",
"value": "hot spring dodger dim light"
},
{
"id": 4,
"type": "column",
"value": "ps_supplycost"
},
{
"id": 5,
"type": "column",
"value": "ps_partkey"
},
{
"id": 6,
"type": "column",
"value": "p_partkey"
},
{
"id": 0,
"type": "table",
"value": "partsupp"
},
{
"id": 2,
"type": "column",
"value": "p_name"
},
{
"id": 1,
"type": "table",
"value": "part"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
8
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": [
10,
11,
12,
13,
14
]
},
{
"entity_id": 4,
"token_idxs": [
4,
5
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"B-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"O",
"O"
] |
514
|
retail_world
|
bird:train.json:6346
|
Give the reorder level for the products from the supplier "Nord-Ost-Fisch Handelsgesellschaft mbH".
|
SELECT T1.ReorderLevel FROM Products AS T1 INNER JOIN Suppliers AS T2 ON T1.SupplierID = T2.SupplierID WHERE T2.CompanyName = 'Nord-Ost-Fisch Handelsgesellschaft mbH'
|
[
"Give",
"the",
"reorder",
"level",
"for",
"the",
"products",
"from",
"the",
"supplier",
"\"",
"Nord",
"-",
"Ost",
"-",
"Fisch",
"Handelsgesellschaft",
"mbH",
"\"",
"."
] |
[
{
"id": 4,
"type": "value",
"value": "Nord-Ost-Fisch Handelsgesellschaft mbH"
},
{
"id": 0,
"type": "column",
"value": "reorderlevel"
},
{
"id": 3,
"type": "column",
"value": "companyname"
},
{
"id": 5,
"type": "column",
"value": "supplierid"
},
{
"id": 2,
"type": "table",
"value": "suppliers"
},
{
"id": 1,
"type": "table",
"value": "products"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2,
3
]
},
{
"entity_id": 1,
"token_idxs": [
6
]
},
{
"entity_id": 2,
"token_idxs": [
9
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
11,
12,
13,
14,
15,
16,
17
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"O",
"B-TABLE",
"O",
"B-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"O",
"O"
] |
10,960
|
cre_Drama_Workshop_Groups
|
spider:train_spider.json:5123
|
Find the states or counties where the stores with marketing region code "CA" are located.
|
SELECT T1.State_County FROM Addresses AS T1 JOIN Stores AS T2 ON T1.Address_ID = T2.Address_ID WHERE T2.Marketing_Region_Code = "CA"
|
[
"Find",
"the",
"states",
"or",
"counties",
"where",
"the",
"stores",
"with",
"marketing",
"region",
"code",
"\"",
"CA",
"\"",
"are",
"located",
"."
] |
[
{
"id": 3,
"type": "column",
"value": "marketing_region_code"
},
{
"id": 0,
"type": "column",
"value": "state_county"
},
{
"id": 5,
"type": "column",
"value": "address_id"
},
{
"id": 1,
"type": "table",
"value": "addresses"
},
{
"id": 2,
"type": "table",
"value": "stores"
},
{
"id": 4,
"type": "column",
"value": "CA"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2,
4
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
7
]
},
{
"entity_id": 3,
"token_idxs": [
9,
10,
11
]
},
{
"entity_id": 4,
"token_idxs": [
13
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-COLUMN",
"O",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O",
"B-COLUMN",
"I-COLUMN",
"I-COLUMN",
"O",
"B-COLUMN",
"O",
"O",
"O",
"O"
] |
11,690
|
financial
|
bird:dev.json:162
|
What is the region of the client with the id 3541 from?
|
SELECT T1.A3 FROM district AS T1 INNER JOIN client AS T2 ON T1.district_id = T2.district_id WHERE T2.client_id = 3541
|
[
"What",
"is",
"the",
"region",
"of",
"the",
"client",
"with",
"the",
"i",
"d",
"3541",
"from",
"?"
] |
[
{
"id": 5,
"type": "column",
"value": "district_id"
},
{
"id": 3,
"type": "column",
"value": "client_id"
},
{
"id": 1,
"type": "table",
"value": "district"
},
{
"id": 2,
"type": "table",
"value": "client"
},
{
"id": 4,
"type": "value",
"value": "3541"
},
{
"id": 0,
"type": "column",
"value": "a3"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
6
]
},
{
"entity_id": 3,
"token_idxs": [
9,
10
]
},
{
"entity_id": 4,
"token_idxs": [
11
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"B-VALUE",
"O",
"O"
] |
13,369
|
e_government
|
spider:train_spider.json:6335
|
What are the payment method codes that have been used by more than 3 parties?
|
SELECT payment_method_code FROM parties GROUP BY payment_method_code HAVING count(*) > 3
|
[
"What",
"are",
"the",
"payment",
"method",
"codes",
"that",
"have",
"been",
"used",
"by",
"more",
"than",
"3",
"parties",
"?"
] |
[
{
"id": 1,
"type": "column",
"value": "payment_method_code"
},
{
"id": 0,
"type": "table",
"value": "parties"
},
{
"id": 2,
"type": "value",
"value": "3"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
14
]
},
{
"entity_id": 1,
"token_idxs": [
3,
4,
5
]
},
{
"entity_id": 2,
"token_idxs": [
13
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"I-COLUMN",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-VALUE",
"B-TABLE",
"O"
] |
3,483
|
trains
|
bird:train.json:702
|
What is the total number of short cars on all the trains that run in the east direction?
|
SELECT SUM(CASE WHEN T1.len = 'short' then 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'
|
[
"What",
"is",
"the",
"total",
"number",
"of",
"short",
"cars",
"on",
"all",
"the",
"trains",
"that",
"run",
"in",
"the",
"east",
"direction",
"?"
] |
[
{
"id": 2,
"type": "column",
"value": "direction"
},
{
"id": 4,
"type": "column",
"value": "train_id"
},
{
"id": 1,
"type": "table",
"value": "trains"
},
{
"id": 9,
"type": "value",
"value": "short"
},
{
"id": 0,
"type": "table",
"value": "cars"
},
{
"id": 3,
"type": "value",
"value": "east"
},
{
"id": 8,
"type": "column",
"value": "len"
},
{
"id": 5,
"type": "column",
"value": "id"
},
{
"id": 6,
"type": "value",
"value": "0"
},
{
"id": 7,
"type": "value",
"value": "1"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
7
]
},
{
"entity_id": 1,
"token_idxs": [
11
]
},
{
"entity_id": 2,
"token_idxs": [
17
]
},
{
"entity_id": 3,
"token_idxs": [
16
]
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": [
6
]
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"O",
"O",
"B-VALUE",
"B-TABLE",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-VALUE",
"B-COLUMN",
"O"
] |
6,924
|
video_games
|
bird:train.json:3475
|
What is the genre of the game "Grand Theft Auto V"?
|
SELECT T2.genre_name FROM game AS T1 INNER JOIN genre AS T2 ON T1.genre_id = T2.id WHERE T1.game_name = 'Grand Theft Auto V'
|
[
"What",
"is",
"the",
"genre",
"of",
"the",
"game",
"\"",
"Grand",
"Theft",
"Auto",
"V",
"\"",
"?"
] |
[
{
"id": 4,
"type": "value",
"value": "Grand Theft Auto V"
},
{
"id": 0,
"type": "column",
"value": "genre_name"
},
{
"id": 3,
"type": "column",
"value": "game_name"
},
{
"id": 5,
"type": "column",
"value": "genre_id"
},
{
"id": 2,
"type": "table",
"value": "genre"
},
{
"id": 1,
"type": "table",
"value": "game"
},
{
"id": 6,
"type": "column",
"value": "id"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
6
]
},
{
"entity_id": 2,
"token_idxs": [
3
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": [
8,
9,
10,
11
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"B-TABLE",
"O",
"B-VALUE",
"I-VALUE",
"I-VALUE",
"I-VALUE",
"O",
"O"
] |
6,054
|
financial
|
bird:dev.json:109
|
How many clients opened their accounts in Jesenik branch were women?
|
SELECT COUNT(T1.client_id) FROM client AS T1 INNER JOIN district AS T2 ON T1.district_id = T2.district_id WHERE T1.gender = 'F' AND T2.A2 = 'Jesenik'
|
[
"How",
"many",
"clients",
"opened",
"their",
"accounts",
"in",
"Jesenik",
"branch",
"were",
"women",
"?"
] |
[
{
"id": 3,
"type": "column",
"value": "district_id"
},
{
"id": 2,
"type": "column",
"value": "client_id"
},
{
"id": 1,
"type": "table",
"value": "district"
},
{
"id": 7,
"type": "value",
"value": "Jesenik"
},
{
"id": 0,
"type": "table",
"value": "client"
},
{
"id": 4,
"type": "column",
"value": "gender"
},
{
"id": 6,
"type": "column",
"value": "a2"
},
{
"id": 5,
"type": "value",
"value": "F"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
2
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": [
7
]
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"B-VALUE",
"O",
"O",
"O",
"O"
] |
4,741
|
talkingdata
|
bird:train.json:1041
|
How many male users are in the age group of M32-38?
|
SELECT COUNT(gender) FROM gender_age WHERE gender = 'M' AND `group` = 'M32-38'
|
[
"How",
"many",
"male",
"users",
"are",
"in",
"the",
"age",
"group",
"of",
"M32",
"-",
"38",
"?"
] |
[
{
"id": 0,
"type": "table",
"value": "gender_age"
},
{
"id": 1,
"type": "column",
"value": "gender"
},
{
"id": 4,
"type": "value",
"value": "M32-38"
},
{
"id": 3,
"type": "column",
"value": "group"
},
{
"id": 2,
"type": "value",
"value": "M"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
7
]
},
{
"entity_id": 1,
"token_idxs": []
},
{
"entity_id": 2,
"token_idxs": [
2
]
},
{
"entity_id": 3,
"token_idxs": [
8
]
},
{
"entity_id": 4,
"token_idxs": [
10,
11,
12
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"B-VALUE",
"O",
"O",
"O",
"O",
"B-TABLE",
"B-COLUMN",
"O",
"B-VALUE",
"I-VALUE",
"I-VALUE",
"O"
] |
1,235
|
college_1
|
spider:train_spider.json:3231
|
How many departments does the college has?
|
SELECT count(DISTINCT dept_name) FROM department
|
[
"How",
"many",
"departments",
"does",
"the",
"college",
"has",
"?"
] |
[
{
"id": 0,
"type": "table",
"value": "department"
},
{
"id": 1,
"type": "column",
"value": "dept_name"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
6
]
},
{
"entity_id": 1,
"token_idxs": [
3
]
},
{
"entity_id": 2,
"token_idxs": []
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"B-TABLE",
"O"
] |
1,753
|
boat_1
|
bird:test.json:869
|
What is the ids of sailors that haven’t reserved a boat?
|
SELECT sid FROM Sailors EXCEPT SELECT sid FROM Reserves
|
[
"What",
"is",
"the",
"ids",
"of",
"sailors",
"that",
"have",
"n’t",
"reserved",
"a",
"boat",
"?"
] |
[
{
"id": 1,
"type": "table",
"value": "reserves"
},
{
"id": 0,
"type": "table",
"value": "sailors"
},
{
"id": 2,
"type": "column",
"value": "sid"
}
] |
[
{
"entity_id": 0,
"token_idxs": [
5
]
},
{
"entity_id": 1,
"token_idxs": [
9
]
},
{
"entity_id": 2,
"token_idxs": [
3
]
},
{
"entity_id": 3,
"token_idxs": []
},
{
"entity_id": 4,
"token_idxs": []
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"B-COLUMN",
"O",
"B-TABLE",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O"
] |
13,630
|
movie_3
|
bird:train.json:9122
|
Please list the full names of all the actors that have starred in the film with the highest replacement cost.
|
SELECT first_name, last_name FROM actor AS T1 INNER JOIN film_actor AS T2 ON T1.actor_id = T2.actor_id INNER JOIN film AS T3 ON T2.film_id = T3.film_id ORDER BY T3.replacement_cost DESC LIMIT 1
|
[
"Please",
"list",
"the",
"full",
"names",
"of",
"all",
"the",
"actors",
"that",
"have",
"starred",
"in",
"the",
"film",
"with",
"the",
"highest",
"replacement",
"cost",
"."
] |
[
{
"id": 3,
"type": "column",
"value": "replacement_cost"
},
{
"id": 0,
"type": "column",
"value": "first_name"
},
{
"id": 5,
"type": "table",
"value": "film_actor"
},
{
"id": 1,
"type": "column",
"value": "last_name"
},
{
"id": 7,
"type": "column",
"value": "actor_id"
},
{
"id": 6,
"type": "column",
"value": "film_id"
},
{
"id": 4,
"type": "table",
"value": "actor"
},
{
"id": 2,
"type": "table",
"value": "film"
}
] |
[
{
"entity_id": 0,
"token_idxs": []
},
{
"entity_id": 1,
"token_idxs": [
4
]
},
{
"entity_id": 2,
"token_idxs": [
14
]
},
{
"entity_id": 3,
"token_idxs": [
18,
19
]
},
{
"entity_id": 4,
"token_idxs": [
8
]
},
{
"entity_id": 5,
"token_idxs": []
},
{
"entity_id": 6,
"token_idxs": []
},
{
"entity_id": 7,
"token_idxs": []
},
{
"entity_id": 8,
"token_idxs": []
},
{
"entity_id": 9,
"token_idxs": []
},
{
"entity_id": 10,
"token_idxs": []
},
{
"entity_id": 11,
"token_idxs": []
},
{
"entity_id": 12,
"token_idxs": []
},
{
"entity_id": 13,
"token_idxs": []
},
{
"entity_id": 14,
"token_idxs": []
},
{
"entity_id": 15,
"token_idxs": []
},
{
"entity_id": 16,
"token_idxs": []
},
{
"entity_id": 17,
"token_idxs": []
},
{
"entity_id": 18,
"token_idxs": []
},
{
"entity_id": 19,
"token_idxs": []
}
] |
[
"O",
"O",
"O",
"O",
"B-COLUMN",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"O",
"O",
"B-TABLE",
"O",
"O",
"O",
"B-COLUMN",
"I-COLUMN",
"O"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.