Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'World Bank Commodity Price Data (The Pink Sheet)'}) and 3 missing columns ({'Unnamed: 18', 'Weights Used in the World Bank Commodity Price Index (in Percent) 1/', 'Unnamed: 17'}).

This happened while the csv dataset builder was generating data using

hf://datasets/aaronmat1905/global-commodity-shocks-analysis-data/raw/commodity_prices/extracted/cmoMonthly_monthly_indices.csv (at revision d9d429d4420d08c99a9bb15cedfbca4fb71d1c4a)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Unnamed: 0: int64
              World Bank Commodity Price Data (The Pink Sheet): string
              Unnamed: 1: string
              Unnamed: 2: string
              Unnamed: 3: string
              Unnamed: 4: string
              Unnamed: 5: string
              Unnamed: 6: string
              Unnamed: 7: string
              Unnamed: 8: string
              Unnamed: 9: string
              Unnamed: 10: string
              Unnamed: 11: string
              Unnamed: 12: string
              Unnamed: 13: string
              Unnamed: 14: string
              Unnamed: 15: string
              Unnamed: 16: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2508
              to
              {'Unnamed: 0': Value('int64'), 'Weights Used in the World Bank Commodity Price Index (in Percent) 1/': Value('string'), 'Unnamed: 1': Value('string'), 'Unnamed: 2': Value('string'), 'Unnamed: 3': Value('string'), 'Unnamed: 4': Value('string'), 'Unnamed: 5': Value('string'), 'Unnamed: 6': Value('float64'), 'Unnamed: 7': Value('float64'), 'Unnamed: 8': Value('string'), 'Unnamed: 9': Value('float64'), 'Unnamed: 10': Value('float64'), 'Unnamed: 11': Value('string'), 'Unnamed: 12': Value('float64'), 'Unnamed: 13': Value('float64'), 'Unnamed: 14': Value('string'), 'Unnamed: 15': Value('float64'), 'Unnamed: 16': Value('float64'), 'Unnamed: 17': Value('float64'), 'Unnamed: 18': Value('string')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1450, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 993, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'World Bank Commodity Price Data (The Pink Sheet)'}) and 3 missing columns ({'Unnamed: 18', 'Weights Used in the World Bank Commodity Price Index (in Percent) 1/', 'Unnamed: 17'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/aaronmat1905/global-commodity-shocks-analysis-data/raw/commodity_prices/extracted/cmoMonthly_monthly_indices.csv (at revision d9d429d4420d08c99a9bb15cedfbca4fb71d1c4a)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Unnamed: 0
int64
Weights Used in the World Bank Commodity Price Index (in Percent) 1/
string
Unnamed: 1
null
Unnamed: 2
string
Unnamed: 3
string
Unnamed: 4
null
Unnamed: 5
null
Unnamed: 6
null
Unnamed: 7
null
Unnamed: 8
string
Unnamed: 9
null
Unnamed: 10
null
Unnamed: 11
string
Unnamed: 12
null
Unnamed: 13
null
Unnamed: 14
string
Unnamed: 15
null
Unnamed: 16
null
Unnamed: 17
null
Unnamed: 18
string
0
based on 2002-04 developing countries' export values 2/ and 3/
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
1
null
null
Commodity Group
null
null
null
null
null
Share of energy and non-energy indices
null
null
Share of sub-group indices
null
null
Share of food index
null
null
null
null
2
null
null
Total Index
null
null
null
null
null
100
null
null
null
null
null
null
null
null
null
World Bank Commodity Price Indexes: Groups and weights
3
null
null
null
Energy
null
null
null
null
67
null
null
null
null
null
null
null
null
null
null
4
null
null
null
Non-Energy
null
null
null
null
33
null
null
null
null
null
null
null
null
null
null
5
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
6
null
null
null
null
null
null
null
null
100
null
null
100
null
null
null
null
null
null
null
7
null
null
null
null
null
null
null
null
4.657418566293743
null
null
4.657418566293743
null
null
null
null
null
null
null
8
null
null
null
null
null
null
null
null
84.57082988045218
null
null
84.57082988045218
null
null
null
null
null
null
null
9
null
null
null
null
null
null
null
null
10.771751553254079
null
null
10.771751553254079
null
null
null
null
null
null
null
10
null
null
null
null
null
null
null
null
100.04584448798855
null
null
null
null
null
null
null
null
null
null
11
null
null
Agriculture
null
null
null
null
null
64.85646094819245
null
null
null
null
null
null
null
null
null
null
12
null
null
null
Food
null
null
null
null
40.030537993261014
null
null
null
null
null
100
null
null
null
null
13
null
null
null
null
null
null
null
null
11.282998404917572
null
null
100
null
null
28.185977432571658
null
null
null
null
14
null
null
null
null
null
null
null
null
3.3918635593970645
null
null
30.061721518269096
null
null
8.473190042981866
null
null
null
null
15
null
null
null
null
null
null
null
null
2.8381865342642207
null
null
25.154541660018566
null
null
7.0900534355596685
null
null
null
null
16
null
null
null
null
null
null
null
null
4.589332160012415
null
null
40.674756791707104
null
null
11.464577770063972
null
null
null
null
17
null
null
null
null
null
null
null
null
0.46361615124387273
null
null
4.108980030005239
null
null
1.1581561839661527
null
null
null
null
18
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
19
null
null
null
null
null
null
null
null
16.33278497355562
null
null
100
null
null
40.80081306003227
null
null
null
null
20
null
null
null
null
null
null
null
null
4.024177157695958
null
null
24.63864652728543
null
null
10.052768110119862
null
null
null
null
21
null
null
null
null
null
null
null
null
2.1299989425180166
null
null
13.041247686580665
null
null
5.32093508929756
null
null
null
null
22
null
null
null
null
null
null
null
null
4.287789107702601
null
null
26.25265142867522
null
null
10.711295232715667
null
null
null
null
23
null
null
null
null
null
null
null
null
4.932507478151657
null
null
30.200039283795572
null
null
12.32186157223774
null
null
null
null
24
null
null
null
null
null
null
null
null
0.5014055543166628
null
null
3.069932991394227
null
null
1.252557620887015
null
null
null
null
25
null
null
null
null
null
null
null
null
0.45690673317072256
null
null
2.7974820822688806
null
null
1.141395434774424
null
null
null
null
26
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
27
null
null
null
null
null
null
null
null
12.414754614787823
null
null
100
null
null
31.013209507396077
null
null
null
null
28
null
null
null
null
null
null
null
null
3.911378343466987
null
null
31.505885253728266
null
null
9.770986200898554
null
null
null
null
29
null
null
null
null
null
null
null
null
1.9453198071452942
null
null
15.669418103746716
null
null
4.859589465104818
null
null
null
null
30
null
null
null
null
null
null
null
null
2.734047287643245
null
null
22.02256405766238
null
null
6.829903930103341
null
null
null
null
31
null
null
null
null
null
null
null
null
2.3821596956467834
null
null
19.18813355206615
null
null
5.950856059061237
null
null
null
null
32
null
null
null
null
null
null
null
null
1.4418494808855147
null
null
11.613999032796483
null
null
3.6018738522281275
null
null
null
null
33
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
34
null
null
null
Beverages
null
null
null
null
8.368368171913593
null
null
100
null
null
null
null
null
null
null
35
null
null
null
null
null
null
null
null
3.8257358547804765
null
null
45.71662929005244
null
null
null
null
null
null
null
36
null
null
null
null
null
null
null
null
3.086380523179113
null
null
36.88150974926992
null
null
null
null
null
null
null
37
null
null
null
null
null
null
null
null
1.4562517939540034
null
null
17.40186096067762
null
null
null
null
null
null
null
38
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
39
null
null
null
Agricultural Raw Materials
null
null
null
null
16.457554783017844
null
null
null
null
null
null
null
null
null
null
40
null
null
null
null
null
null
null
null
8.596595075709784
null
null
100
null
null
null
null
null
null
null
41
null
null
null
null
null
null
null
null
1.8964976088833747
null
null
22.06103221311479
null
null
null
null
null
null
null
42
null
null
null
null
null
null
null
null
6.700097466826409
null
null
77.93896778688523
null
null
null
null
null
null
null
43
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
44
null
null
null
null
null
null
null
null
7.86095970730806
null
null
100
null
null
null
null
null
null
null
45
null
null
null
null
null
null
null
null
1.9405307342868943
null
null
24.685672062189177
null
null
null
null
null
null
null
46
null
null
null
null
null
null
null
null
3.668003474746443
null
null
46.66101355711603
null
null
null
null
null
null
null
47
null
null
null
null
null
null
null
null
2.2524254982747234
null
null
28.653314380694784
null
null
null
null
null
null
null
48
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
49
null
null
Metals and Minerals
null
null
null
null
null
31.60210106325134
null
null
100
null
null
null
null
null
null
null
50
null
null
null
null
null
null
null
null
8.431346761078801
null
null
26.679703176075325
null
null
null
null
null
null
null
51
null
null
null
null
null
null
null
null
12.144605442884556
null
null
38.429740537115656
null
null
null
null
null
null
null
52
null
null
null
null
null
null
null
null
5.960606450276898
null
null
18.861424556382484
null
null
null
null
null
null
null
53
null
null
null
null
null
null
null
null
0.5674225120345996
null
null
1.795521477824871
null
null
null
null
null
null
null
54
null
null
null
null
null
null
null
null
2.5480035264875704
null
null
8.06276621097997
null
null
null
null
null
null
null
55
null
null
null
null
null
null
null
null
0.6629095549834744
null
null
2.0976755743444606
null
null
null
null
null
null
null
56
null
null
null
null
null
null
null
null
1.2872068155054393
null
null
4.073168467277241
null
null
null
null
null
null
null
57
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
58
null
null
Fertilizers
null
null
null
null
null
3.5872824765447575
null
null
100
null
null
null
null
null
null
null
59
null
null
null
null
null
null
null
null
0.604711805888795
null
null
16.8571003215573
null
null
null
null
null
null
null
60
null
null
null
null
null
null
null
null
0.7773794468329338
null
null
21.670427459108254
null
null
null
null
null
null
null
61
null
null
null
null
null
null
null
null
0.7220096479838362
null
null
20.12692484365687
null
null
null
null
null
null
null
62
null
null
null
null
null
null
null
null
1.4831815758391922
null
null
41.34554737567757
null
null
null
null
null
null
null
63
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
64
null
null
null
null
null
null
null
null
null
null
null
100
null
null
null
null
null
null
null
65
null
null
null
Gold
null
null
null
null
null
null
null
77.78901550026363
null
null
null
null
null
null
null
66
null
null
null
Silver
null
null
null
null
null
null
null
18.93154923627381
null
null
null
null
null
null
null
67
null
null
null
Platinum
null
null
null
null
null
null
null
3.2794352634625588
null
null
null
null
null
null
null
68
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
69
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
70
Source: World Bank Prospects Group
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
71
Notes:
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
72
Differences in group totals and components are due to rounding.
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
73
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
74
1/
null
Laspeyres Index.
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
75
2/
null
Developing countries is represented by Low- and Middle-income Countries (LMIC) as defined by the World Bank Development Data Group Classification of Income Group as of June 20, 2006.
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
76
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
77
3/
null
Trade data sources are United Nations' Comtrade Database via World Bank WITS system, Food and Agriculture Organization FAOSTAT Database, International Energy Agency Database, BP Statistical Review of World Energy, World Metal Statistics, World Bureau of Metal Statistics and World Bank staff estimates.
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
78
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
79
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
80
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
81
4/
null
The maize weight includes sorghum.
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
82
5/
null
The groundnut oil weight includes groundnuts.
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
83
6/
null
The oranges weight includes orange juice.
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
84
7/
null
Rubber TSR20 replaces Rubber RSS3 in Other Raw Materials index from 2018
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
85
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
86
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
87
World Bank, Prospects Group.
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
88
May 2, 2023
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
1
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
3
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
4
null
null
Energy
Non-energy **
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
5
null
null
null
null
null
null
null
null
null
null
null
null
null
null
Metals & Minerals
null
null
null
null
6
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
7
null
null
null
null
null
null
null
Grains
null
null
Timber
null
null
null
null
null
null
null
8
null
null
iENERGY
iNONFUEL
null
null
null
null
iGRAINS
null
null
iTIMBER
null
null
iMETMIN
null
null
null
null
9
null
null
2.13444915445322
18.81589520307
null
null
null
null
23.57750535562
null
null
16.23922227558
null
null
12.89589240086
null
null
null
null
10
null
null
2.13444915445322
18.68146974844
null
null
null
null
23.42698276517
null
null
16.23922227558
null
null
12.9291469329
null
null
null
null
End of preview.

No dataset card yet

Downloads last month
70